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EXECUTIVE SUMMARY 

Robust performance models that can predict the deterioration of pavement are a key element in 
developing methodologies for extending the design life of airfield pavements from the current 20 
years. These models relate a performance indicator to various interactive features such as age, 
climate, and traffic. Models based on conventional regression analysis are inadequate for 
establishing pavement performance prediction models as a function of multitude design features. 
This study aims to investigate machine learning (ML) techniques for evaluating the most 
informative features that affect the pavement performance. Machine learning methods are chosen 
because of their capability to efficiently solve nonlinear problems with high dimensionality and to 
find predictive functions based on data. 
 
This study included a review of application of ML techniques for prediction of pavement 
performance. The asphalt-surfaced pavement performance data from the FAA’s Extended Airport 
Pavement Life (EAPL) database were used for this review. The applicability of ML techniques for 
analyzing the EAPL data was examined by developing pavement performance prediction models 
for pavement condition index (PCI) per ASTM D5340 requirements and for an anti-structural 
condition index (anti-SCI), which is similar to PCI but which considers only non-load-related 
distresses. These models considered pavement age as the primary predictor. Three ML techniques, 
namely Artificial Neural Network, Support Vector Machine, and Random Forest were employed 
in this study. Two modeling approaches, namely static and autoregressive, were implemented for 
each ML method. In the static approach, the pavement functional age was the only predictor. In 
the autoregressive approach, the previous condition measurement as well as the time lapse between 
the two measurements were also considered as the predictors. The results indicated that the ML 
methods based on the static approach can produce pavement deterioration curves as accurately as 
a polynomial regression model. The results also showed that autoregressive models are capable of 
predicting the future performance with a high accuracy. 
 
To expand the performance models beyond pavement age, climate and traffic attributes were 
considered as predictors. A series of climate variables were identified, and various supervised and 
unsupervised learning techniques were applied to determine the key climate parameters affecting 
the pavement performance. Feature selection and feature construction methods were implemented 
to reduce the dimensionality of input space by identifying and removing a subset of irrelevant and 
redundant variables that can decrease the model accuracy and quality. 
 
This study also examined the correlation between two pavement performance indices (PCI and 
SCI) and traffic data in the EAPL database. The intention was to determine whether, based on the 
available data, aircraft traffic is a significant contributing factor to the pavement performance, and 
if it can be included as an independent variable in the ML prediction model. With limited 
exceptions, historical runway traffic data are only available for 2014 and later, while the majority 
of performance data in the database are for years prior to 2014. Therefore, the annual average 
traffic index was calculated using the data from later years. The regression analysis indicated poor 
correlation between the average traffic index calculated by this method and the performance 
indices. 
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Findings from the climate data analysis were used to develop predictive models for anti-SCI using 
an autoregressive approach and a random forest as the base learner. Three approaches were 
implemented to train the prediction model by considering different representations of input data. 
The results indicated that including climate variables improved the prediction performance. 
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1.  INTRODUCTION 

1.1  BACKGROUND 

One goal of the Federal Aviation Administration (FAA) Airport Technology Research Program is 
to develop robust airfield pavement performance models that can be incorporated into a 
methodology for extended-life pavement design. Pavement life in this context refers to the 
functional life that is not directly considered in the FAA thickness design models. Pavements 
designed to meet the current 20-year standard are likely to experience functional failure before 
reaching their expected design life. Since 2012, the FAA Airport Technology R&D Branch has 
gathered a variety of airfield pavement data focused on extending airport pavement life and stored 
them in an Extended Airport Pavement Life (EAPL) database. The FAA EAPL database is 
designated PA40, as it will be referred to throughout this report. The data collected include 
performance measures, such as surface friction, profile roughness, and surface distresses that 
potentially yield pavement functional failure. The PA40 database also contains maintenance work 
histories, historical pavement condition index (PCI) data as well as historical runway usage and 
weather data. The FAA has proposed a performance index, called serviceability level (SL), which 
is a comprehensive index of indexes quantifying the suitability of a pavement for use by aircraft. 
A preliminary study by the FAA (Ashtiani et al., 2019) proposed a framework for the development 
of SL as a function of the PCI, roughness, and groove indices. This preliminary study considered 
pavement age the only independent variable, assuming the age is a surrogate for traffic and weather 
events. The study developed regression models to predict each component of SL as a function of 
pavement age using EAPL data. The study also implemented logistic regression models to develop 
the SL index. 
 
A major challenge in developing the SL solely based on age is that the effects of other factors, 
such as climate conditions and traffic levels, are missed. Age-based models may predict the same 
service life for two pavement sections experiencing different levels of traffic and located in 
different climatic regions. This, in turn, could lead to errors in predicting maintenance timing. The 
conventional approach in pavement management is to develop separate regression models for 
related families of pavements. However, models based on conventional regression analysis are 
inadequate for predicting long-term pavement performance as a function of multiple design 
features. On the other hand, methods based on computational intelligence (CI) can be promising 
in contributing multiple features.  

1.2  RESEARCH OBJECTIVES 

In this study, machine learning (ML) solutions are examined as an analysis tool for the FAA’s 
EAPL database to identify key elements or parameters as part of the development of reliable 
pavement performance models. The objectives of this study are: 
 
• Investigate available ML technologies and determine which applications are best suited for 

analysis of the EAPL data. 
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• Perform preliminary data analysis to identify key parameters or data attributes in the EAPL 
data. 

The report is organized into following five major sections to address the objectives of the study: 

1) Investigation of ML technologies to determine the applications that are best suited for 
analysis of the EAPL data.  

2) Validation of the ML concepts and techniques for this data set by developing PCI vs age 
models. 

3) Identification of the most informative attributes to be included in ML predictive models. 

4) Development of a preliminary predictive model for pavement performance. 

5) Findings and recommendations for future research. 

2.  MACHINE LEARNING TECHNOLOGIES FOR PAVEMENT PERFORMANCE 
MODELING 

2.1  PAVEMENT PERFORMANCE MODELING 

Under the EAPL program, the FAA introduced SL as a means to define pavement life. 
Serviceability refers to the ability of the pavement to carry aircraft loads while providing: (a) a 
smooth ride, (b) a tractive surface, and (c) low foreign object damage (FOD) potential. The SL is 
a combined index of various structural and functional condition indices. Key performance 
indicators affecting runway serviceability include: 
 
• PCI, or its load-related component (SCI) and non-load-related component (anti-SCI). Anti-

SCI is scaled from zero to 100, and for flexible pavements is calculated using all distresses 
defined in ASTM D5340, except for alligator cracking and rutting 

• Roughness indexes. This study used the FAA software ProFAA to compute four key 
indices: Boeing bump index (BBI), straightedge index (SEI), profilograph index (PI), and 
international roughness index (IRI).  

• Skid resistance. In this study the surface skid resistance is represented by the percent of 
grooves that have a width or depth less than 0.125 inches, as computed by the FAA’s 
ProGroove software program, which evaluates the grooves of longitudinal profiles. 

Pavement performance models attempt to relate the pavement functional condition indices to a set 
of explanatory variables, such as pavement age, runway usage, and climate conditions, as well as 
design, construction, and maintenance features. The numerous performance modeling approaches 
proposed for both highway and airfield pavements fall into three broad categories: deterministic 
models, probabilistic models, and CI models. 
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2.1.1  Deterministic Models 

Deterministic models predict a condition index over time for a given traffic load, climate, and 
structural condition. Common models based on linear or nonlinear regression analysis use the 
deterministic approach where the functional form of the model is explicitly defined. The 
robustness of these models is in doubt when the performance model considers many explanatory 
variables. 

2.1.2  Probabilistic Models 

Probabilistic (or stochastic) models were developed on the premise that the deterministic models 
cannot address the inherent variability in traffic loads, climate conditions, and pavement condition 
measurements (Li et al.,1996; Yang et al., 2003). A popular probabilistic model for pavement 
performance is based on the Markov chain model, in which the probability of a change from a 
given pavement condition to another condition is determined. This model can handle the 
uncertainty in pavement prediction performance (Alharbi, 2018).  

2.1.3  Computational Intelligence 

ML, which is a subcategory of CI, is a sophisticated analysis approach for deriving definitive 
information out of large sets of data for classification, regression, and prediction. ML uses 
powerful tools to determine interdependencies among a long list of potentially disparate variables. 
There is a growing interest in using ML techniques for pavement performance prediction 
modeling. Popular ML methods for pavement performance prediction include artificial neural 
networks (ANNs), support vector machines (SVMs), decision trees, random forests (RFs), radial 
basis functions, and Bayesian networks. 

2.2  MACHINE LEARNING MODELS 

ML methods operate in two types: supervised and unsupervised. In a supervised learning process, 
the training input and output data are accurately labeled. Data labeling is the process of 
parametrizing a group of data features with one or more labels. The labeled inputs and outputs 
(targets) are mapped to learn the functions that approximate the relationship between them. The 
goal of an ML model is to increase the learning accuracy while maintaining low variance and 
avoiding overfitting to noise. In unsupervised learning methods, the outputs are not labeled. The 
unsupervised methods are used to investigate the clusters, patterns, and correlations among input 
data. Supervised learning methods are often used for regression, classification, and forecasting 
analysis:  
 
• Regression is a function approximation method that uses continuous functions to predict 

the target value with respect to the given set of input variables. Popular ML models for 
regression are feed-forward ANN, SVM, K-nearest neighbor, Bayesian networks, and RF. 

• Classification is a method to predict a data point class as part of a given a set of features. 
The outputs are discrete-valued classes. Binary classification means that data are classified 
(grouped) into only two distinct classes. Common ML models for classification include 
logistic regression, Bayesian network, SVM, RF, decision tree, and ANN. 
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• Forecasting models are used to predict the future values or behavior of a target given the 
past observed time-series values (Harvey, 1990).  

 
The input data in these contexts are also expressed as predictors, independent variables, 
explanatory variables, attributes, or features. The output data can be in the form of target, response, 
or class. 

2.3  MACHINE LEARNING FOR TIME-SERIES MODELS 

Time-series models describe the time dependency of the data where the data points are indexed in 
order by time. Many time-series data exhibit temporal dependency or autocorrelation, meaning 
that there are relationships between lagged observations.  
 
Models for forecasting time-series data were introduced based on linear statistical methods such 
as autoregressive integrated moving average (ARIMA) (Box & Jenkins, 1970). It has been 
observed that the linear methods lack the robustness to deal with many real applications (Bontempi 
et al., 2013). Most recently, ML models have been proposed as an alternative to linear models. In 
many applications, one-step forecasting is desired, meaning that the previous time-series data are 
used to predict one future target. In a method proposed by Bontempi et al (2013), the problem of 
one-step forecasting can be addressed as a problem of supervised learning. The time-series model 
is formulated as a nonlinear autoregressive model in which observations from previous time steps 
(yt-1, yt-2, …, yt-n) are used as input of the supervised learning to predict the value at the next time 
step (yt). The autoregressive model can be extended to include exogenous input variables (X) in a 
time-series manner. Below is an example of how the prediction can be expressed: 

                                                          𝑦𝑦(𝑡𝑡) = 𝑓𝑓(𝑦𝑦𝑡𝑡−1, … ,𝑦𝑦𝑡𝑡−𝑑𝑑 ,𝑋𝑋𝑡𝑡−1, … ,𝑋𝑋𝑡𝑡−𝑑𝑑)                                        (1) 

2.4  MACHINE LEARNING IMPLEMENTATION  

A key factor for a successful ML process is the quality and representation of data. Noisy and 
unreliable data as well as irrelevant and redundant information adversely impact the performance 
of supervised learning (Kotsiantis et al., 2006). A critical step toward the implementation of ML 
is data preprocessing to ensure data quality, adequacy, and relevancy. Data preprocessing includes, 
but is not limited to, outlier detection, data normalization, and feature engineering. Data 
normalization is often applied in ML when the features are in different scales. For example, one 
climate variable may be in degrees Fahrenheit (average daily temperature) and another may be a 
count (freeze-thaw cycles). Normalization transforms the features to be on a similar scale. Two 
common methods for normalization are the min-max normalization where the data are normalized 
to the range of (-1, +1), and the Z-score that transfers the features to have zero mean and a standard 
deviation of 1. Normalization may improve the performance and stability of supervised learning. 
Feature engineering is the process of converting raw data into sets of feature vectors (input 
variables) that provide the best prediction model performance. Reducing the number of variables 
to a subset of useful features is desirable for an effective ML prediction. The problem with high-
dimensional features is that having more dimensions complicates the ML learning process and 
increases the difficulty of gauging the influence of each feature on the prediction. In addition, 
models with high numbers of features relative to the number of data samples are prone to 
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overfitting. To decrease the dimensionality of the feature domain, feature engineering often 
implements the two techniques of feature selection (FS) and feature construction (FC). FS is the 
process in ML that reduces the dimensionality of data by identifying and removing a subset of 
irrelevant and redundant variables. FC reduces the dimensionality of the data by constructing new 
features from the original feature set. The product of data pre-processing is the final training set 
for ML prediction, regression or classification. 
 
The process of building ML models for data-driven applications is an iterative process. 
Kumar et al. (2016) proposed a model selection triple (MST) approach, which is the process of 
building a precise prediction model. It has three components: feature engineering, algorithm 
selection, and parameter tuning. Algorithm selection is the process of picking a ML model suited 
for the prediction goals. Many ML methods have multiple learning algorithms, which can be used 
for regression, classification, and prediction. Algorithm selection is often an iterative process 
requiring technical knowledge and experience. The best candidate ML models are determined 
depending on the size and type of the data (e.g., time dependent) and sparsity of the data 
(infrequent, missing, irregular data). Parameter tuning is the process of determining the value of 
hyper-parameters of ML algorithms. In ML, hyper-parameters refer to parameters that are set prior 
to training and then tuned to improve the training performance. For each ML model, there are 
unique hyper-parameter configurations (e.g., loss functions, search strategies, etc.) that impact 
performance. Hyper-parameters are fine-tuned iteratively to create a trade-off between the 
performance accuracy (bias) and variance of the ML models. The flowchart in figure 1 depicts the 
ML process. 
 

 
 

Figure 1. Machine Learning Process 

2.5  MACHINE LEARNING MODEL EVALUATION  

As part of the iterative MST process, appropriate model performance measures are required. 
Crucial to estimating these performance measures is the use of cross validation to confirm the 
stability of the trained models. Common cross validation methods in ML applications include k-
fold cross validation, holdout method, and leave-one-out cross validation. These approaches use 
multiple training and test sets to ensure the model does not overfit, i.e., accurate performance 
estimates can be obtained when deploying models to new data. The best model is selected based 
on various criteria including accuracy of prediction (using mean square error [MSE], F1 score, 
receiver operating characteristic [ROC] curve, etc.), generalization (similar performance on new 
data), and qualitative criteria. “Qualitative” in this context refers to methods that employ the 
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judgment of experienced pavement engineering practitioners to verify whether the developed 
models conform to the conventional engineering logic. 

2.6  MACHINE LEARNING FOR PAVEMENT PERFORMANCE MODELING 

Pavement performance models can be categorized into two broad approaches: continuous function 
approximation with regression or discrete time-series prediction. The regression approach is the 
most commonly adopted method for describing the deterioration of pavement performance. In this 
approach, the performance at age t is estimated for a set of explanatory variables (age, climate, 
traffic, etc.) at age t. This approach is also called static modeling (Yang et al., 2003). The majority 
of existing performance models are based on nonlinear regression. In the time-series approach, the 
lagged values of a performance index are used in addition to other variables to predict future 
performance. In this approach, it is required that the explanatory variables be available at lagged 
intervals. This approach is also called autoregressive. The pavement performance data are 
categorized as longitudinal autoregressive when the same samples are repeatedly measured at 
different time points (Tsagris et al., 2018). 
 
The following paragraphs review applications of ML to the development of pavement performance 
models. The reviewed studies are mostly from highway pavements, in which data from the Long-
Term Pavement Performance (LTPP) study or State Department of Transportation (DOT) 
databases were used. There are very few studies on the application of ML on performance 
modeling of airport pavements. 
 
Ozbay and Laub (2001) developed ANN-based models for prediction of highway roughness (IRI) 
progression using LTPP data and compared the results with linear regression models. They 
considered three modeling frameworks. The first model considered age, cumulative equivalent 
single-axle load (ESAL), and structural number (SN) as predictors. The second model considered 
the first measured IRI as a predictor with a SN and the time and accumulated ESALs between the 
initial IRI and target IRI. The third model was similar to the second model, except ESALs were 
not considered. Initially, 16 GPS-2 sites were used with a total of 101 data points for modeling. 
The backpropagation learning algorithm was used as the training rule. The errors from ANN 
models were relatively high. The results showed that the first ANN model returned higher errors 
than the regression model, while the ANN errors were lower in the second and third models with 
a larger number of input variables. Researchers added 118 more data points from other sites and 
tested both ANN and regression models. Employing additional data did not increase the accuracy 
of the linear regression models, but did improve the accuracy of the ANN model. In general, the 
second model with a higher number of predictors produced higher performance. It was also 
concluded that one hidden layer with three nodes was the optimal network. 
 
Shekharan (2000) developed a hybrid method of genetic adaptive ANN training models to predict 
pavement condition ratings (PCR). PCR is a combined index, derived from distresses and 
roughness, formulated for the Mississippi DOT. The predictors chosen for the training were 
pavement structure, age, and cumulative ESALs. They also used the same data for creating models 
based on regression analysis and concluded that the ANN models performed better. 
 
Yan et al. (2003) developed models for prediction of overall PCR using Florida Department of 
Transportation (FDOT) data. The overall pavement condition was based on three performance 
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measures including crack, rut, and ride ratings. The minimum of these measures determines the 
PCR. The FDOT database included time-series performance data from 1976 to 2001. Researchers 
supplemented missing time-series data by applying moving average methods to smooth the 
irrational oscillation of time-series data. Individual ANN-based models were developed for 
prediction of each performance measure. In these models, data from up to the previous 5 years 
were used to predict the next year’s performance. The data types used for modeling the prediction 
of the future crack included the crack at previous years, the average rut and riding indices of the 
previous years, and pavement age and maintenance cycles. The ANN architectures with one hidden 
layer and 11 and 22 neurons were found to be the optimal model for rigid and flexible pavement, 
respectively. It was concluded that the developed ANN models for each individual condition 
indices have satisfactory capabilities in predicting the future condition up to a period of five years. 
 
Marcelino et al. (2019) used time-series data to develop 5- and 10-year IRI predictive models. The 
models were based on an RF algorithm. Data from the LTPP were used in the study. The predictors 
included lagged values of IRI, climate (annual average precipitation, annual average temperature, 
annual average freeze index, minimum annual average humidity, and maximum annual average 
humidity), traffic (cumulative annual average daily truck traffic), and pavement structure 
(thickness and SN) up to 5 years. It was concluded that the models with five lagged values 
produced lower errors than the model that used only one lagged value. The 5-year predictive model 
was more reliable and accurate than the 10-year prediction. A sensitivity analysis concluded that 
the previous IRI values were the most significant predictor influencing the predictive performance. 
Other predictors (climate, traffic, and structure) had minimal effect on the prediction of IRI. 
 
Amin et al. (2017) proposed an ANN-based model for PCI prediction using data from collector 
and arterial roads of Montreal, Canada. They applied backpropagation with the generalized delta 
rule learning algorithm. The predictors were average annual daily traffic (AADT), ESALs, SN, 
pavement age, and difference in the PCI between the current and preceding year. The analysis 
results indicated that the previous PCI significantly influences the estimation of PCI values 
followed by the AADT and ESALs. Pavement age and structural characteristics of the pavement 
had insignificant influence in determining the PCI. 
 
Kargah-Ostadi (2013) developed predictive models for IRI using three ML methods. In the first 
method, feed- and cascade-forward ANN were used, and two backpropagation learning 
techniques, Levenberg-Marquadt (LM) and Bayesian regularization (BR), were tested. The second 
method was SVM with polynomial and Gaussian kernel functions. The third method was a radial 
basis function (RBF) network. The models were built using 14 predictors including previous IRI, 
the number of ESALs since previous IRI measurement, time lapse since previous IRI, pavement 
age, three thickness values of pavement layers, climate parameters (precipitation, freezing index, 
freeze-thaw cycles and number of days above 32°F) since last IRI, and three subgrade material 
properties. Principal component analysis (PCA) was implemented, which resulted in reduction of 
the input variables to 10 principal components. It was concluded that the feed-forward ANN with 
BR learning was the most accurate and had the best generalization capability. However, a 
sensitivity analysis showed that the predicted IRI had an inverse relationship with the time and 
traffic, making the model unreliable. While the accuracy of the RBF model was not high, the IRI 
predicted by the model was more realistic than other methods and was consistent with expected 
pavement performance.  
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Alharbi (2018) developed multilinear regression (MLR) ANN models to predict the cracking, 
riding, and rutting index for asphalt and concrete pavements based on Iowa DOT pavement 
management system data. The predictors considered for asphalt pavement ride index included 
pavement age, previous IRI, pavement thickness, subgrade stiffness, average rainfall, and average 
temperature. The predictors for cracking index were pavement age, previous cracking index, 
average temperature, and SN. The predictors for rutting index were pavement age, previous rutting 
index, average temperature, and pavement thickness. The results indicated that ANN produced 
better accuracy than MLR models in terms of coefficient of determination (R2) and root mean 
square error (RMSE). Pavement age followed by average temperature were found to be the most 
significant predictors for all asphalt pavement performance indices. 
 
Tabatabaee et al. (2013) employed a two-stage model for prediction of pavement serviceability 
index (PSI) using data from the Minnesota DOT’s Office of Materials and Road Research 
(MnRoad). In the first stage, SVM was used to classify pavement sections into families of sections 
with similar pavement structure characteristics, such as asphalt material and mix properties. Three 
pavement structure types were identified and then used as categorical inputs to a recurrent neural 
network (RNN) model to predict PSI. Other predictors of the RNN model included pavement age, 
previous PSI, season (summer or winter), yearly ESAL, maintenance type (preventive=1, 
otherwise=0), and treatment history. The RNN model employed one hidden layer with five hidden 
neurons and LM as the training algorithm. The results showed that the two-stage model in which 
the pavement material characteristics were used to group the pavement structures significantly 
improved the prediction performance, compared to a one-stage model that considers each 
pavement structure’s characteristics as input variables. Sensitivity analysis indicated that treatment 
history had minimal impact on the model, since the pavement deterioration rate did not change 
significantly before and after treatment.  
 
Ziari et al. (2016) used SVM for IRI predictions using LTPP database data. Five kernel functions 
were evaluated in this study. The predictors included pavement age, climate factors (e.g., annual 
average precipitation, temperature and freezing index), ESAL, asphalt, and total pavement 
thickness. The results indicated that the Pearson VII universal kernel is capable of predicting 
pavement performance in the short and long terms of the pavement life cycle. The Gaussian kernel 
function showed reasonable accuracy for short-term prediction of IRI. 

2.7  REVIEW OF MACHINE LEARNING MODELS 

A review of the most relevant literature on the application of ML techniques to pavement 
performance modeling indicated that ANN, SVM, and RF, all yielded acceptable performance. 
Sections 2.7.1 through 2.7.3 provide a brief introduction to these ML methods. 

2.7.1  Artificial Neural Network  

ANN is a parallel information processing machine consisting of processing units called neurons. 
Neurons are organized into three subsets, namely input, hidden (intermediate), and output layers 
as shown in figure 2. The number of neurons in the input and output layers is often determined by 
the number of independent and dependent variables, respectively. The number of neurons in the 
hidden layer is chosen depending on the problem. The connections between the neurons in each 



 

9 

layer to the neurons in the next layer are made by means of weights, biases, and transfer functions 
as presented in equation 2:  

 𝑦𝑦𝑖𝑖 = 𝑓𝑓𝑖𝑖�∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗𝑛𝑛
𝑗𝑗=1 + 𝑏𝑏𝑖𝑖�                                                                         (2) 

where, for neuron i, yi is the neuron output, xj is the jth input to neuron i, and wij is the connection 
weight between neurons i and j. bi is the bias of the input neuron and fi is the transfer function. The 
neuron output will be the input feature for the connected nodes in the next layer. The most common 
transfer functions are linear functions and nonlinear sigmoid functions (hyperbolic tangent and 
logistic). Multiple hidden layers with adequate numbers of neurons and nonlinear transfer 
functions equip the network to establish nonlinear relationships between input and output vectors. 
 

 
 

Figure 2. Typical Architecture of ANN Models 

The feed-forward multilayer perceptron is the most popular network structure. In this approach, 
neurons in each layer are only connected to neurons in layers that are closer to the output. In ANN, 
the relationship between the input and output vectors or the patterns between the data is learned. 
This learning is also called the training process. The connection weights and biases are adjusted 
iteratively through the training process with the goal of minimizing the errors between the model 
output (predicted) and the target output, defined as the objective function. MSE, shown in 
equation 3, is the most popular performance metric used in training: 

 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1                                                     (3) 

where, n is the number of data points, Y is the measured or desired response, and 𝑌𝑌�  is the predicted 
response. The objective of training is to numerically optimize the objective function subject to the 
model’s trainable parameters. The optimization model is based on gradient descent, in which 
weights and biases are randomly initialized and then adjusted repeatedly such that the performance 
(e.g., MSE value) moves in the direction of the steepest gradient of the error surface 
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(Samarasinghe, 2007). This process is called backpropagation. In backpropagation, the error is 
sent back to the network to adjust the weights and biases to improve the performance (minimize 
the error). 
 
Backpropagation training methods based on gradient descent are susceptible to finding suboptimal 
solutions at local minima, thereby reducing the generalization capability of the trained model. A 
common problem in neural network models is overfitting, which occurs when a network is 
memorized in the training set but has not yet learned to generalize to new inputs. In this situation, 
the network produces a relatively small error on the training set but a much larger error when new 
data is fed into the model. A robust network training should provide a balance between the bias 
(error) and variance (fitting to the noise). 

2.7.2  Support Vector Machine for Classification 

SVM is an ML method based on statistical learning theory that builds a model of the data being 
observed and outputs a function that can be used to predict some features of future data (Cristianini 
& Schölkopf, 2002). SVM was initially developed for data classification with exactly two classes. 
The classification operates by finding the best hyperplane that separates all data points of one class 
from those of the other class. The largest margin between the two classes is indicative of 
the best hyperplane. The margin represents an area with no data points of either class. Figure 3 
illustrates an example of a classification problem in a pavement engineering application where the 
pavement is classified into serviceable and unserviceable based on the value of two pavement 
performance measures, PCI and roughness. Consider the training data as a set of points xj, along 
with their classes yj, where 𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑(d=2, a two-dimensional problem in this example) and y=±1. 
The equation of the hyperplane is 𝑓𝑓(𝑥𝑥) = 𝑤𝑤. 𝑥𝑥 + 𝑏𝑏 = 0. The optimum hyperplane with maximum 
margin is obtained by minimizing the norm of w as follows: 

 min 1
2
‖𝑤𝑤‖2                                                                           (4) 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡         𝑦𝑦𝑗𝑗�𝑤𝑤. 𝑥𝑥𝑗𝑗 + 𝑏𝑏� ≥ 1                             (5) 

The support vectors are the xj on the boundary planes where yj.(w.xj+b) = 1. 
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Figure 3. SVM Classification for Pavement Serviceability 

The above optimization problem is only feasible for data that can be separated by a linear 
hyperplane. For inseparable data, SVM applies the soft margin concept, meaning that the 
hyperplane separates most but not all of the data (figure 4). In this case, the soft margin 
formulations allow for some errors in classifications to avoid overfitting to noise. This is done by 
introducing slack variables ξj  and a penalty parameter C to the optimization function: 

 min 1
2
‖𝑤𝑤‖2 + 𝐶𝐶 ∑ 𝜉𝜉𝑗𝑗𝑗𝑗                                                        (6) 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡         𝑦𝑦𝑗𝑗�𝑤𝑤. 𝑥𝑥𝑗𝑗 + 𝑏𝑏� ≥ 1 − 𝜉𝜉𝑗𝑗                           (7) 

The first term in equation 6 refers to margin error, and the second term refers to classification error. 
The optimization problem can be expressed as a dual quadratic optimization by constructing the 
Lagrange function from the objective function. The final form of the optimization function is 
shown in equation 8: 

 max∑ 𝛼𝛼𝑖𝑖 −
1
2
∑ ∑ 𝛼𝛼𝑗𝑗𝛼𝛼𝑘𝑘𝑦𝑦𝑗𝑗𝑦𝑦𝑘𝑘𝑥𝑥𝑗𝑗′𝑥𝑥𝑘𝑘𝑘𝑘𝑗𝑗𝑗𝑗                                     

 𝛼𝛼𝑗𝑗 = 𝐶𝐶 − 𝜇𝜇𝑗𝑗     �𝜇𝜇𝑗𝑗  is the Lagrange multiplier�                
 subject to         ∑ 𝑦𝑦𝑗𝑗𝛼𝛼𝑗𝑗                                     𝑗𝑗   

 0 ≤ 𝛼𝛼𝑗𝑗 ≤ 𝐶𝐶                                                            (8) 
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Figure 4. Soft Margin SVM Classification  

Classification of data is not always feasible with a simple hyperplane. Nonlinear SVM methods 
have been proposed to solve these problems. In these methods, instead of using nonlinear 
hyperplanes, the training data are transferred into a higher dimensional feature space RD by means 
of a mapping function ϕ, where the training data can be separated by a linear hyperplane.  
 
Therefore, the dot product (xj.xk) in Rd for the linear case is equivalent to the dot product (φ (xj). φ 
(xk)) in RD for the nonlinear case. The dot product in RD space is expressed by the kernel functions 
K(Xj,Xk) = (φ (xj). φ (xk)). Three popular kernel functions are shown in equations 9 to 11: 

Linear:       𝐾𝐾�𝑋𝑋𝑗𝑗 ,𝑋𝑋𝑘𝑘� = 𝑋𝑋𝑗𝑗𝑇𝑇𝑋𝑋𝑘𝑘                                                     (9) 

Polynomial:       𝐾𝐾�𝑋𝑋𝑗𝑗 ,𝑋𝑋𝑘𝑘� = (1 + 𝑋𝑋𝑗𝑗
𝑇𝑇𝑋𝑋𝑘𝑘)𝑝𝑝                            (10) 

Gaussian or Radial Basis Function:       𝐾𝐾�𝑋𝑋𝑗𝑗 ,𝑋𝑋𝑘𝑘� = exp �−𝛾𝛾�𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑘𝑘�
2
�      (11) 

 
The 𝛾𝛾 > 0 in equation 11 is the kernel scale, which controls the width of the Gaussian. A small 
value of 𝛾𝛾 results in a smooth margin boundary. As 𝛾𝛾 is increased, the curvature of the margin 
boundary increases, and the value of the hyperplane function becomes constant outside the close 
proximity of the region where the data are concentrated. In this situation, the classifier is clearly 
overfitting the data (Ben-Hur &Weston, 2010). 
 
The objective function in the case of nonlinear SVM takes the following form: 

 𝑚𝑚𝑚𝑚𝑚𝑚∑ 𝛼𝛼𝑖𝑖 −
1
2
∑ ∑ 𝛼𝛼𝑗𝑗𝛼𝛼𝑘𝑘𝑦𝑦𝑗𝑗𝑦𝑦𝑘𝑘𝐾𝐾�𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑘𝑘�                                           𝑘𝑘𝑗𝑗𝑗𝑗  (12) 
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2.7.3  Support Vector Machine for Regression 

SVM classification can be extended for regression applications. SVM regression is considered a 
single-classification problem. SVM regression relies on kernel functions and is a nonparametric 
technique, i.e., the model structure is not specified a priori but is determined from data. Suppose 
that the training data includes a set of N observations of multivariate predictors xn and target values 
yn. The SVM aims to find a prediction function f(x) that deviates from target yn by a value less than 
or equal to ε for each training point xn, and at the same time is as flat as possible. Consider a linear 
function f(x) as: 

 𝑓𝑓(𝑥𝑥) = 𝑤𝑤. 𝑥𝑥 + 𝑏𝑏                                            (13) 

To satisfy the flatness of the function, the norm of (w.w) should be minimized by treating this as a 
convex optimization problem: 

 min 1
2
‖𝑤𝑤‖2                                                    (14) 

subject to the constraint that the error for each training data point is less than the precision error ε: 

 𝑦𝑦𝑛𝑛 − (𝑤𝑤. 𝑥𝑥𝑛𝑛 + 𝑏𝑏) ≤ 𝜀𝜀                                              (15) 

Convex optimization is not always possible, meaning that no such function f(x) exists that 
approximates all data points under the constraints. Analogous to the soft margin concept for the 
SVM classification, the optimization can become feasible by allowing regression errors to exist up 
to the value of slack variables ξj and ξ*j. The optimization function is expressed as: 

 Min     Φ(w) = 1
2
‖𝑤𝑤‖2 + 𝐶𝐶 ∑ (𝜉𝜉𝑗𝑗 + 𝜉𝜉𝑗𝑗∗)𝑗𝑗                                 (16) 

subject to: 

𝑦𝑦𝑗𝑗 − �𝑤𝑤. 𝑥𝑥𝑗𝑗 + 𝑏𝑏� ≤ 𝜖𝜖 + 𝜉𝜉𝑗𝑗 
 �𝑤𝑤. 𝑥𝑥𝑗𝑗 + 𝑏𝑏� − 𝑦𝑦𝑗𝑗 ≤ 𝜖𝜖 + 𝜉𝜉𝑗𝑗∗                                                (17) 

         𝜉𝜉𝑗𝑗 ≥ 0, 𝜉𝜉𝑗𝑗∗ ≥ 0 

The constant C controls the overfitting (regularization) by imposing a penalty on observations that 
have an error greater than the precision margin (ε). This value designates the trade-off between the 
flatness of f(x) and the deviations exceeding the limiting threshold ε. SVM employs a linear ε-
insensitive loss function to penalize estimation error. This loss function is based on the observed 
values y beyond the ε boundary (figure 5). The errors that are within  a distance ε of the observed 
value are set to zero. This can be described as shown in equation 18: 
 

 𝐿𝐿𝜀𝜀 = � 0                       𝑖𝑖𝑖𝑖 |𝑦𝑦 − 𝑓𝑓(𝑥𝑥)| ≤ 𝜀𝜀
|𝑦𝑦 − 𝑓𝑓(𝑥𝑥)| − 𝜀𝜀          𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                            (18) 
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Figure 5. The Soft Margin ε-Insensitive Loss in SVM Regression  

The optimization problem in equation 16 can be solved in its Lagrange dual formulation. This is 
done by introducing nonnegative Lagrange multipliers αn and α*n for each observation xn: 

𝐿𝐿(𝛼𝛼) = 1
2
∑ ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)(𝛼𝛼𝑗𝑗 − 𝛼𝛼𝑗𝑗∗)𝑁𝑁

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1 𝑥𝑥𝑖𝑖′𝑥𝑥𝑗𝑗 + 𝜀𝜀 ∑ (𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑖𝑖∗)𝑁𝑁

𝑖𝑖=1 + ∑ 𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1 (𝛼𝛼𝑖𝑖∗ − 𝛼𝛼𝑖𝑖)        (19) 

Subject to, 

 ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗) = 0                                      𝑁𝑁
𝑖𝑖=1  (20) 

 0 ≤ 𝛼𝛼𝑖𝑖,𝛼𝛼𝑖𝑖∗ ≤ 𝐶𝐶                                            (21) 

The Lagrange multipliers αi and α*i are obtained by solving the optimization function in 
equation 19. The w and b in the regression function in equation 16 and 17 will be determined as: 

 𝑤𝑤 = ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)(𝑥𝑥𝑖𝑖′𝑥𝑥)                                                 𝑁𝑁
𝑖𝑖=1  (22) 

 𝑏𝑏 = 1
𝑁𝑁
∑ (𝑦𝑦𝑖𝑖 − ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)(𝑥𝑥𝑖𝑖′𝑥𝑥)𝑁𝑁

𝑖𝑖=1 )                         𝑁𝑁
𝑖𝑖=1  (23) 

The optimal solution is obtained by implementing the complementarity conditions of Karush-
Kuhn-Tucker (KKT) (Karush, 1939):  
 

𝛼𝛼𝑖𝑖(𝜀𝜀 + 𝜉𝜉𝑖𝑖 − 𝑦𝑦𝑖𝑖 + 𝑥𝑥𝑖𝑖′𝑤𝑤 + 𝑏𝑏) = 0 
 𝛼𝛼𝑖𝑖∗(𝜀𝜀 + 𝜉𝜉𝑖𝑖∗ + 𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖′𝑤𝑤 − 𝑏𝑏) = 0                                         (24) 

𝜉𝜉𝑖𝑖(𝐶𝐶 − 𝛼𝛼𝑖𝑖) = 0 
𝜉𝜉𝑖𝑖∗(𝐶𝐶 − 𝛼𝛼𝑖𝑖∗) = 0 

Under the KKT conditions all observations inside the 𝜀𝜀 tube have Lagrange multipliers of zero. If 
either αi or α*i is not zero, the corresponding observation is called a support vector. 
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A linear model is not always adequate in describing the variations of target values. The nonlinear 
SVM regression model can be obtained by replacing the dot product 𝑥𝑥𝑖𝑖′. 𝑥𝑥 with a nonlinear kernel 
function K(xi,xj) = (φ(xi).φ(xj)), where φ(x) is a transformation function that maps x to a high 
dimensional feature space (RD). The optimal function f(x) for the nonlinear SVM is governed by a 
transformed feature space in lieu of the input space: 

𝐿𝐿(𝛼𝛼) = 1
2
∑ ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)�𝛼𝛼𝑗𝑗 − 𝛼𝛼𝑗𝑗∗�𝑁𝑁

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1 𝐾𝐾�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� + 𝜀𝜀 ∑ (𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑖𝑖∗)𝑁𝑁

𝑖𝑖=1 − ∑ 𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1 (𝛼𝛼𝑖𝑖∗ − 𝛼𝛼𝑖𝑖)      (25) 

subject to: 

 ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗) = 0                                                                𝑁𝑁
𝑖𝑖=1  (26) 

 
 0 ≤ 𝛼𝛼𝑖𝑖,𝛼𝛼𝑖𝑖∗ ≤ 𝐶𝐶                                                                     (27) 

The prediction function is determined as: 

 𝑓𝑓(𝑥𝑥) = ∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)𝐾𝐾�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗�𝑁𝑁
𝑖𝑖=1 + 𝑏𝑏                                  (28) 

The KKT complementarity conditions are:  

𝛼𝛼𝑖𝑖(𝜀𝜀 + 𝜉𝜉𝑖𝑖 − 𝑦𝑦𝑖𝑖 + 𝑓𝑓(𝑥𝑥)) = 0 
 𝛼𝛼𝑖𝑖∗(𝜀𝜀 + 𝜉𝜉𝑖𝑖∗ + 𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥)) = 0                                            (29) 

𝜉𝜉𝑖𝑖(𝐶𝐶 − 𝛼𝛼𝑖𝑖) = 0 
𝜉𝜉𝑖𝑖∗(𝐶𝐶 − 𝛼𝛼𝑖𝑖∗) = 0 

2.7.4  Random Forest 

RF is an ensemble of regression and classification techniques that makes predictions by combining 
the results from many individual decision trees. RF uses bagging, also known as bootstrap 
aggression, for combining the outputs of multiple decision trees into an RF. Decision trees are 
trained on randomly sampled subsets of the data. While an individual decision tree is often prone 
to overfitting, the bagging technique decreases the variance in the model. One significant 
advantage of RF is that it can handle the collinearity of the features in the input domain by 
randomly sampling subsets of data and then training the different decision trees on these subsets 
instead of on the entire dataset. The training subsets are then replaced as many times as the 
ensemble makes trees. The final result of a prediction model is determined by averaging over all 
predictions from the sampled trees (Breiman, 2001; Dietterich, 2000; Svetnik et al., 2003). Some 
of the RF hyperparameters are: number of trees in the forest, minimum leaf size, minimum number 
of samples required to split an internal node, and number of learning cycles. 
 
3.  VALIDATION OF ML TECHNIQUES BY DEVELOPING PCI VS AGE MODELS 

In this section, three ML methods, ANN, SVM, and RF, are used to develop deterioration models 
for two pavement condition indices, PCI and anti-SCI. The indices will be modeled against 
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pavement age. The deterioration models based on ML methods will be compared to the regression 
models. Since the purpose of this study is to validate the application of ML models, only the 
performance data from asphalt surfaced pavements of the EAPL database were used for the 
analysis. A similar study can be done using rigid pavement data. The following runways (RWY) 
were considered in this study: 
 
• Boston Logan International Airport (BOS) RWY 4L-22R  
• John Glenn Columbus International (CMH) RWY 10L-28R  
• CMH RWY 10R-28L  
• Piedmont Triad International Airport (GSO) RWY 5L-23R  
• La Guardia Airport (LGA) RWY 4-22  
• Kansas City International Airport (MCI) RWY 9-27  
• Miami International Airport (MIA) RWY 12-30  
• Tucson International Airport (TUS) RWY 3-21  
• TUS RWY 11L-29R 

 
Two modeling approaches are used to predict each condition index. In the first model, the 
pavement functional age is the only predictor. This model, which is similar to regression, is 
referred to as a static model and is used for function approximation. The second model is an 
autoregressive model in which the previous condition measurement as well as the time lapse 
between the two measurements are also considered as the predictors. Table 1 illustrates the input 
variables and the output in each model.  
 

Table 1. Input and Output Variables in ML Models 

Model Input 
Variable Variable Description Output 

Static Age (t) Time since last major rehabilitation or reconstruction PCI (t) 

Autoregressive 
Age(t) Time since last major rehabilitation or reconstruction 

PCI (t) PCI (t-1) Previous PCI measurement 
delatTime Time since previous PCI measurement 

The average and standard deviation (SD) of the time lapse in the training dataset are 3.9 years and 
2.5 years, respectively. The histogram of the time lapse is shown in figure 6. The autoregressive 
model is expected to predict the future pavement condition in increments from 1 to 6 years 
(average ±SD). 
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Figure 6. Time Lapse Between Two Anti-SCI Measurements 

3.1  DATA PREPARATION AND PREPROCESSING 

Data from the PA40 database for flexible pavement keel sections were used for developing the 
predictive models. Before ML training, various data preprocessing methods were applied to both 
the input and output data to make sure that the database was comprehensive, complete, and free of 
outliers. The performance data have an inherent spatial variability and errors that need to be 
identified, and possibly removed, prior to performing ML modeling. For example, records with 
improved PCI between two consecutive inspections need to be examined before using for ML 
prediction modeling. 
 
The functional age at the time of each performance measurement was calculated for every 
pavement section. For each modeling approach, the required input and output vectors were created. 
In the autoregressive model, every pavement record for which the PCI was greater than the 
previous measurement, without the pavement having undergone rehabilitation, was considered an 
outlier and removed from the database. 

3.2  MODEL PERFORMANCE EVALUATION  

The performance of the trained ML models is evaluated based on three criteria: 
 
1) Accuracy of prediction. The accuracy is defined as the ability of the model to achieve 

maximum likelihood or minimum errors. Two accuracy measures considered in this study 
are root mean square error (RMSE) and relative root mean square error (RRMSE) as 
defined in equations 30 and 31: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛
�(𝑌𝑌𝑚𝑚,𝑖𝑖 − 𝑌𝑌�𝑝𝑝,𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

                                                                 (30) 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(%) = 100 × �
1
𝑛𝑛
��

𝑌𝑌𝑚𝑚,𝑖𝑖 − 𝑌𝑌𝑝𝑝,𝑖𝑖

𝑌𝑌𝑚𝑚,𝑖𝑖
�
2

 
𝑛𝑛

𝑖𝑖=1

                                      (31) 

where, Ym is the measured target and Yp is the predicted target. RMSE is the standard 
deviation of prediction error. It indicates how concentrated the data are around the 
prediction fitted curve. Compared to mean average error, RMSE gives higher weights to 
larger errors. It is not a bounded metric, meaning that its value could be from zero to 
infinity. 

The other accuracy measure is the coefficient of determination (R2) of the linear regression 
curve of the measured versus predicted targets. 

2) Generalization. Generalization is achieved when the error in training data is not 
significantly different than that on testing or new data. 

3) Qualitative. The predicted performance should be consistent with pavement engineering 
principles. In the context of this study, qualitative evaluation means that the performance 
must exhibit a monotonically decreasing trend. 

3.3  ANTI-SCI PREDICTION MODEL 

This section illustrates the results of static and autoregressive anti-SCI prediction models using the 
three ML methods (ANN, SVM, and RF). 
 
3.3.1  Anti-SCI Prediction Using ANN—Static Model 
 
A feed-forward multilayer perceptron is used as the network structure. Two backpropagation 
learning algorithms were used in this study: Levenberg-Marquadt with early stopping (LM-ES) 
and LM with Bayesian regularization (LM-BR). In the LM-ES method, the training patterns are 
divided randomly into training and validation subsets. Error (MSE) on the training subset is 
minimized until the MSE on the validation subset starts to increase. The training process is then 
stopped at the minimum MSE on the validation data. Bayesian regularization minimizes a linear 
combination of squared errors and weights and then produces a network that generalizes well 
(MacKay, 1992). In this algorithm, a regularizing term is added to be minimized along with the 
error (MSE). This additional term typically penalizes larger weights. 
 
To obtain the highest predictive efficiency, alternative architectures consisting of multiple hidden 
layers, neuron numbers, and transfer functions (sigmoid logarithm, sigmoid tangent, or pure linear) 
were considered. For developing the static model, a network architecture with one input layer 
(single neuron), one hidden layer (three neurons), and one output layer (single neuron) was 
identified as the optimal architecture for the prediction. This model can be described as 1-3-1 
architecture. The sigmoid logistic transfer function was used for the hidden layer and a linear 
transfer function was used for the output layers. 
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To implement the LM-ES model, from the 293 data points, 205 (70%) were selected randomly for 
training, 44 (15%) for testing, and 44 (15%) for validation. To implement the ANN model with 
Bayesian Regularization, 235 (80%) were selected randomly for training and 58 (20%) were 
selected randomly for testing. One section from each runway was set aside for independent testing 
(36 data points). The MATLAB® for Deep Learning Toolbox™ software application was used for 
model development. All the input and output variables were normalized to the range of [-1, +1] 
before starting the ANN training in order to have uniformly distributed variables. The 
“mapminmax” preprocessing function in the MATLAB program was used for data normalization. 
Following the established optimum network architecture, the model was trained multiple times 
using both training algorithms. The testing dataset was not used for training the ANN models.  
 
The RMSE of the testing dataset in both LM-ES and LM-BR models is 7.7. This number indicates 
that the average anti-SCI prediction error is less than 7.7 units (on the 0-100 scale) from the 
prediction curves. Figures 7 and 8 show the scatter plots of the measured (target) versus predicted 
anti-SCI developed by the ANN LM-ES and LM-BR approaches for the training and testing 
datasets. The training and testing datasets demonstrated comparable R2 in both models. This 
indicates that both training methods performed well in terms of generalization, meaning that the 
probability of obtaining an overfitted prediction is low. Figures 9 and 10 show the fitted curves of 
the predicted anti-SCI values in both LM-ES and LM-BR models, respectively. It is of concern 
that the LM-BR model does not exhibit a monotonically decreasing anti-SCI deterioration. 
 

 
(a) Training Subset                                               (b) Testing Subset 

Figure 7. Measured vs Predicted Anti-SCI of Training (a) and Testing (b) Subsets Using the 
LM-ES Algorithm 
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(a) Training Data                                                 (b) Testing Data 

 
Figure 8. Measured vs Predicted Anti-SCI of Training (a) and Testing (b) Data Using the  

LM-BR Algorithm 

 

 
 

Figure 9. Anti-SCI Prediction Curve in the ANN LM-ES Model 
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Figure 10. Anti-SCI Prediction Curve in the ANN LM-BR Model 

3.3.2  Anti-SCI Prediction Using SVM—Static Model 

The polynomials and Gaussian kernel functions were tested in this study. For these kernel 
functions, the hyperparameters that need to be tuned are kernel scale, penalty parameter C, and 
precision margin ε. The optimum SVM hyperparameters were determined by performing a three-
dimensional grid search. The grid points are chosen from a predefined range for kernel scale γ 
(0.1, 0.5, 1, …, 10), penalty parameter C (0, 0.001, …, 20), and precision margin ε (0.001, 0.01, 
…., 10). The Gaussian kernel function (equation 11) was used in this study since it showed better 
performance than the polynomials. The grid points that produced the highest accuracy and at the 
same time resulted in a monotonically decreasing deterioration trend were selected as the SVM 
model hyperparameters. A 10-fold cross validation was used for evaluation of model performance. 
In each round of cross-validation, data were partitioned into 10 randomly chosen subsets (folds) 
of roughly equal size. One subset was used to validate the model trained using the remaining nine 
subsets. This process is repeated 10 times such that each subset is used exactly once for validation. 
The optimum hyperparameters resulting from the grid search and the cross-validation analysis are 
shown in table 2. 
 

Table 2. SVM Static Model Hyperparameters 

SVM Model Hyperparameter Value 
Kernel function Gaussian 
Kernel scale, γ 1.5 
Penalty parameter, C 12 
Precision margin, ε 0.001 
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Figure 11 shows the predicted anti-SCI deterioration curve, and figure 12 shows the scatter plot of 
predicted versus measured anti-SCI with R2 equal to 0.69. It is observed from the figures that the 
error of the SVM model is relatively high in predicting anti-SCI less than 60.  
 

 
 

Figure 11. Anti-SCI Prediction Curve in the SVM Static Model 

 
 

Figure 12. Measured vs Predicted Anti-SCI in the SVM Static Model 
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3.3.3  Anti-SCI Prediction Using RF—Static Model 

The RF model employed a bagged ensemble of regression trees to predict the performance index. 
The out-of-bag technique was used for cross-validation to tune the regression tree hyperparameters 
and improve the predictive performance. The RF hyperparameters were optimized using random 
search. The following hyperparameters yielded the best performance: 
 
• Number of trees in the forest = 300; 
• Minimum leaf size = 8; 
• Minimum number of samples required to split an internal node = 5; 
• Number of learning cycles = 30. 
 
Figure 13 shows the predicted anti-SCI deterioration curve, and figure 14 shows the scatter plot of 
predicted versus measured anti-SCI with R2 equal to 0.79. The averages of RMSE and RRSE from 
10 cross-validation analyses are 7.01 and 11.95. Notwithstanding that the errors are lower than the 
ANN and SVM models, the deterioration trend is not monotonically decreasing. This means that 
the developed static RF model is not suitable for representing the pavement performance over age.  
 

 
 

Figure 13. Anti-SCI Prediction Curve in the RF Model 
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Figure 14. Measured vs Predicted Anti-SCI in the RF Model 

3.3.4  Comparison of Static Models for Anti-SCI Prediction 

An anti-SCI model based on regression analysis was developed by fitting a fourth-degree 
polynomial equation. The developed ML models were then compared to the regression model. 
Figure 15 shows the comparison between the anti-SCI deterioration curves from ANN LM-ES and 
SVM models to the regression model. Both ANN and SVM models predict a slightly higher value 
than the regression model, especially for the anti-SCI values beyond 6 years. Table 3 summarizes 
the architecture and performance of the various models used to predict anti-SCI in this study. 
Results indicate that while the RF model produced a lower error, the predicted deterioration curve 
does not exhibit a monotonically descending trend. The ANN LM-ES and SVM models 
outperformed the fourth-degree polynomial regression model by producing a lower prediction 
error and exhibiting a meaningful deterioration trend. Overall, the prediction error was high in all 
the models for anti-SCI lower than 60. The high error is attributed to the fact that the pavement 
age is incapable of explaining all the variability in anti-SCI. Other variables such as climate and 
weather condition can affect the deterioration of pavement. Figure 16 shows the actual versus 
predicted anti-SCI values on the independent testing data. All models exhibited R2 values on the 
testing data set that were reasonable and comparable to the R2 values from the training data set. In 
other words, they yielded good generalization performance. 
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Figure 15. Deterioration Curves Predicted by Three Models 

Table 3. Summary of Model Performance in Predicting Anti-SCI for the Static Model 

Model 
Network 

Architecture 

Model Testing 
Subset 

Independent Testing 
Subset 

Decreasing 
Trend 

RMSE RRSE R2 RMSE RRSE R2  
ANN LM 1-3-1 7.77 11.43 0.69 7.74 10.90 0.63 Yes 
ANN BR 1-3-1 7.75 12.81 0.74 8.33 11.78 0.59 No 
SVM Gaussian kernel 8.07 14.84 0.71 8.02 11.38 0.62 Yes 

RF Bagged ensemble 
of trees 7.01 11.95 0.79 7.50 9.91 0.66 No 

Regression Fourth-degree 
polynomial 8.09 14.04 0.72 7.98 11.1 0.64 No 
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Figure 16. Performance of ML Models on Independent Testing Data  

3.3.5  Anti-SCI Prediction Using ANN—Autoregressive Model 

The input variables in the autoregressive models are pavement age, the previous anti-SCI 
measurement, and the time lapse since the previous measurement. Similar to the static model, a 
feed-forward multilayer perceptron network with two backpropagation learning algorithms, LM-
ES and LM-BR, was used for the autoregressive modeling. The optimum model architecture 
consists of an input layer with three neurons (consistent with the three predictors), one hidden layer 
with five neurons, and an output layer with one neuron. The sigmoid logistic and linear transfer 
functions were used for the hidden and output layers, respectively. 
 
The RMSE of the testing datasets are 6.0 in the LM-ES model and 5.5 in the LM-BR model. 
Figures 17 and 18 show the scatter plots of the measured (target) versus predicted anti-SCI 
developed by the ANN LM-ES and LM-BR approaches for the training and testing datasets. The 
R2 on both testing datasets are greater than those obtained from the ANN static models. However, 
the accuracy of the trained LM-ES model on the testing dataset is less than that of the training 
dataset, indicating that the model generalization is questionable. In the LM-BR model, the 
accuracy of the testing dataset is comparable to that of the training dataset, indicating suitable 
generalizability. Overall, the autoregressive predictive models seem to have greater power than 
the corresponding static models, in that they produce lower errors and greater R2. 
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(a) Training Subset                                               (b) Testing Subset 

Figure 17. Measured vs Predicted Anti-SCI of (a) Training and (b) Testing Subsets Using the 
ANN LM-ES Autoregressive Algorithm 

 
(a) Training Subset                                               (b) Testing Subset 

Figure 18. Measured vs Predicted Anti-SCI of (a) Training and (b) Testing Subsets Using the 
ANN LM-BR Autoregressive Algorithm 

The predictive performance of the trained ANN models was evaluated using the independent 
testing dataset as shown in figure 19.  
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(a) ANN LM-ES Autoregressive Model                  (b) ANN LM-BR Autoregressive Model 

Figure 19. Measured vs Predicted Anti-SCI on the Independent Testing Dataset  

3.3.6  Anti-SCI Prediction Using SVM—Autoregressive Model 

Similar to the static model, a 10-fold cross-validation was used for the evaluation of model 
performance. The optimum hyperparameters for the autoregressive model resulting from the cross-
validation analysis are shown in table 4. The scatter plot of the actual and predicted anti-SCI values 
for the testing dataset from all 10 folds is shown in figure 20. Results indicate that the accuracy of 
the autoregressive SVM model is greater than the static model. The trained SVM model was tested 
with an independent testing dataset as shown in figure 21. The performance of the SVM model is 
acceptable as determined by the RMSE and R2 for the testing dataset. 
 

Table 4. SVM Autoregressive Model Hyperparameters 

SVM Model Hyperparameter Value 
Kernel function Gaussian 
Kernel scale, γ 5 
Penalty parameter, C 4 
Precision margin, ε 0.001 
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Figure 20. Measured vs Predicted Anti-SCI in the SVM Autoregressive Model  

 
 

Figure 21. Performance of the SVM Autoregressive Model on Independent Testing Dataset 

3.3.7  Anti-SCI Prediction by RF—Autoregressive Model 

Similar to the static model, a bagged ensemble of regression trees was used for the prediction of 
performance index using the autoregressive approach. The following hyperparameters resulting 
from multiple iterations of cross-validation analysis yielded the best performance: 
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• Number of trees in the forest = 100 
• Minimum leaf size = 3 
• Minimum number of samples required to split an internal node = 5 
• Number of learning cycles = 30 

 
Figure 22 shows the scatter plot of predicted versus measured anti-SCI with R2 = 0.80. The average 
values of RMSE and RRSE from the 10 cross-validation analyses are 6.8 and 13.4, respectively. 
The trained RF model was tested with the independent testing dataset as shown in figure 23. The 
performance of the trained RF model on the independent testing dataset is better than for the 
training data, as determined by the higher R2.  
 

  
 

Figure 22. Measured vs Predicted Anti-SCI in the RF Autoregressive Model 
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Figure 23. Performance of the RF Autoregressive Model on Independent Testing Dataset 

3.3.8  Comparison of Autoregressive Models for Anti-SCI Prediction 

Table 5 summarizes the performance of the autoregressive models in predicting anti-SCI. The 
performance of the developed autoregressive models for incremental prediction of the pavement 
condition was evaluated using data from three runway sections that were set aside for independent 
testing. The first example uses performance data from section 20C of CMH RWY 10L-28R. The 
anti-SCI was measured at ages 2, 4, 6, 9, 12, and 15 years. The measured anti-SCI of 80 at the age 
of 4 years was used as the base value. Then the subsequent anti-SCI values were calculated 
incrementally at the age intervals for which measured data were available. The predicted anti-SCI 
values using the four ML models were compared to the measured values, as shown in figure 24. 
Of the four models, the RF model predictions were the most consistent with actual measured 
values. The ANN LM-ES and SVM models underpredicted the anti-SCI at higher ages. Since the 
predicted anti-SCI at each increment was used as the input for the next increment, the errors 
accumulated.  
 
Table 5. Summary of Model Performance in Predicting Anti-SCI for the Autoregressive Model 

Model Network Architecture 

Model Testing 
Subset 

Independent Testing 
Subset 

RMSE RRSE R2 RMSE RRSE R2 
ANN LM 1-3-1 6.9 11.4 0.80 6.9 9.4 0.73 
ANN BR 1-3-1 5.3 6.2 0.88 6.7 9.2 0.76 
SVM  Gaussian kernel 7.4 13.6 0.78 6.5 9.3 0.75 
RF Bagged ensemble of trees 6.8 13.4 0.80 5.9 8.1 0.84 
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Figure 24. Performance Comparisons of Autoregressive Models to the Measured Anti-SCI, 
CMH RWY 10L-28R 

In the next example, performance data from section 4B of MCI RWY 9-27 were used. The anti-
SCI was measured at the approximate ages of 4, 8, 12, 14, 17, and 18.5 years. The measured anti-
SCI of 74 at the age of 8 years was used as the base value. Then the subsequent anti-SCI values 
were calculated incrementally at the age intervals in agreement with the measured data. The 
predicted anti-SCI values using the four ML models were compared to the measured values in 
figure 25. All the models underpredicted the anti-SCI, especially at the ages of 12 and 14 years. 
The gap in prediction could be due to relatively good performance of this pavement section 
compared to other runway pavements at the same ages. Figure 25 shows the anti-SCI remained 
above 70 after 14 years. It is also due to the fact that the primary predictor in these models is 
pavement age, which may not be able to explain all the variability of the pavement performance. 
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Figure 25. Performance Comparisons of Autoregressive Models to the Measured Anti-SCI, 
MCI RWY 9-27 

A third example illustrates the capability of the autoregressive models in predicting future 
performance. In section 200 of San Francisco International Airport (SFO) RWY 10R-28L, the last 
available anti-SCI measurement was 68, at approximate age 11 years. The developed models were 
used to predict the future anti-SCI in increments of 2 years. In figure 26, there is a 15-unit 
difference in the predicted anti-SCI at age 19 between ANN LM-BR and RF models and ANN 
LM-ES and SVM. 
 

 
 

Figure 26. Performance Comparisons of Autoregressive Models to the Measured Anti-SCI,  
SFO RWY 10R-28L 
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3.4  PCI PREDICTION MODEL 

This section illustrates the results of static and autoregressive PCI predictive models using the 
same three ML methods that were used in the previous section (ANN, SVM, RF). 

3.4.1  PCI Prediction Using ANN—Static Model 

Similar to the anti-SCI modeling, feed-forward multilayer perceptron with LM-ES and LM-BR 
backpropagation learning algorithms were implemented for developing PCI predictive modeling. 
For developing the static model, a network architecture with one input layer (single neuron), one 
hidden layer (three neurons), and one output layer (single neuron) was identified as the optimal 
architecture for the prediction. The sigmoid logistic transfer function was used for the hidden layer, 
and linear transfer function was used for the output layer. 
 
To implement the LM-ES model, 70% of the data were selected randomly for training, 15% for 
testing, and 15% for validation. To implement the ANN model with Bayesian regularization, 80% 
were selected randomly for training and 20% for testing. One section from each runway was set 
aside for independent testing (30 data points). All input and output variables were normalized to 
the range of [-1, +1] before starting the ANN training to have uniformly distributed variables.  
 
Figures 27 and 28 show the scatter plots of the measured (target) versus predicted PCI developed 
by ANN LM-ES and LM-BR approaches for the training and testing datasets. The RMSE error of 
the testing datasets in the LM-ES and LM-BR models are 10.8 and 9.0, respectively. While the 
testing datasets demonstrated slightly lower R2 than the trained models, both models can be 
characterized as having acceptable generalizability. Figures 29 and 30 show the fitted curves of 
the predicted PCI values in the LM-ES and LM-BR models, respectively. Both models exhibit 
monotonically decreasing PCI deterioration. 
  

 

(a) Training Subset                                                 (b) Testing Subset 
 

Figure 27. Measured vs Predicted PCI of (a) Training and (b) Testing Subsets Using the  
LM-ES Algorithm 
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(a) Training Data                                                  (b) Testing Data 

 
Figure 28. Measured vs Predicted PCI of (a) Training and (b) Testing Data Using the  

LM-BR Algorithm 

 

 
 

Figure 29. The PCI Prediction Curve in the ANN LM-ES Model 
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Figure 30. The PCI Prediction Curve in the ANN LM-BR Model 

Figure 31 shows the performance of the ANN LM-ES and ANN LM-BR models using the 
independent testing dataset. Both models returned lower errors on the independent data than the 
training data. 
 

 
 

Figure 31. Performance of the ANN Models on Independent Testing Data 

3.4.2  PCI Prediction Using SVM—Static Model 

The optimum hyperparameters that yielded the best model performance were determined by 
performing a 10-fold cross validation as shown in table 6.  
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Table 6. SVM Hyperparameters for PCI Static Model 

SVM Model Hyperparameter Value 
Kernel function Gaussian 
Kernel scale, γ 4 
Penalty parameter, C 12 
Precision margin, ε 0.001 

 
Figure 32 shows the predicted PCI deterioration curve, which is relatively linear and follows a 
descending trend. Figure 33 shows the scatter plot of predicted versus measured PCI with R2 and 
RMSE equal to 0.75 and 9.87, respectively. Figure 34 shows the performance of the trained SVM 
model on the independent testing dataset. The generalization performance of the trained model is 
acceptable, as it produced lower RMSE and higher R2 on the independent test dataset. 
 

 
 

Figure 32. The PCI Prediction Curve in the SVM Model 



 

38 

  
 

Figure 33. Measured vs Predicted PCI in the SVM Model 

 
 

Figure 34. Performance of the SVM Model on Independent Testing Data 

3.4.3  PCI Prediction Using RF—Static Model 

The RF hyperparameters were optimized using out-of-bag cross-validation analysis. The following 
hyperparameters yielded the best performance: 
 



 

39 

• Number of trees in the forest = 300 
• Minimum leaf size = 8 
• Minimum number of samples required to split an internal node = 5 
• Number of learning cycles = 30 
 
Figure 35 shows the predicted PCI deterioration curve, and figure 36 shows the scatter plot of the 
predicted versus measured PCI with R2 and RMSE equal to 0.8 and 8.6, respectively. Although 
the errors are lower than the ANN and SVM models, the deterioration curve is not smooth and 
does not follow a monotonically decreasing trend. This means that the RF model is not suitable 
for representing the pavement performance over time. The independent test dataset shows 
comparable R2 (figure 37), but greater RMSE than the training dataset, suggesting unreliable 
generalization performance of the trained model. 
 

 
 

Figure 35. The PCI Prediction Curve in the RF Model 
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Figure 36. Measured vs Predicted PCI in the RF Model 

 
 

Figure 37. Performance of the RF Model on Independent Testing Data 

3.4.4  Comparison of Static Models for PCI Prediction  

A fourth-degree polynomial equation was fitted to predict the PCI and then was compared to the 
ML models. The PCI deterioration curves obtained from the two ANN and SVM models were 
compared to the regression model, as shown in figure 38. The deterioration curves from the ANN 



 

41 

and SVM models were not consistent with the regression curve. Table 7 summarizes the 
architecture and performance of different models used in this study to predict PCI. Results indicate 
that while the RF model produced a lower error, the predicted deterioration curve is not smooth 
and does not exhibit a monotonically descending trend. The ANN LM-BR model performed better 
than the fourth-degree polynomial regression model by producing lower prediction error. 
However, its performance was less promising when tested on the independent dataset. Overall, the 
prediction errors were relatively high in all the models, especially for PCI lower than 50. The high 
error is attributed to the fact that the pavement age is incapable of explaining all the variations in 
PCI. Some of the models did not exhibit comparable performance when applied to the independent 
test dataset. However, given the limited data available for independent testing, the overall 
generalization performance of the models was acceptable.  
 

 
 

Figure 38. The PCI Deterioration Curves Predicted by Four Models 

Table 7. Summary of Model Performance in Predicting PCI—Static Models 

Model 
Network 

Architecture 

Model Testing 
Subset 

Independent Testing 
Subset Decreasing 

Trend RMSE RRSE R2 RMSE RRSE R2 
ANN LM 1-3-1 10.83 31.14 0.73 9.07 12.72 0.81 Yes 
ANN BR 1-3-1 9.01 12.70 0.73 10.48 14.65 0.77 Yes 

SVM Gaussiankernel 9.87 29.44 0.75 8.55 11.96 0.78 Yes 

RF Bagged of 
ensemble trees 8.63 21.49 0.80 9.56 13.54 0.80 No 

Regression Fourth-degree 
Polynomial 9.31 26.09 0.76 9.98 16.02 0.87 Yes 
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3.4.5  PCI Prediction Using ANN—Autoregressive Model 

Similar to the static model, a feed-forward multilayer perceptron network with two 
backpropagation learning algorithms, LM-ES and LM-BR, was used for the autoregressive 
modeling. The optimum model architecture was an input layer with three neurons (consistent with 
the three predictors), one hidden layer with five neurons, and an output layer with one neuron. The 
sigmoid logistic and linear transfer functions were used for the hidden and output layers, 
respectively. 
 
The RMSE for the testing dataset are 6.9 in the LM-ES model, and 5.8 in the LM-BR model. 
Figures 39 and 40 show the scatter plots of the measured (target) versus predicted PCI developed 
by the ANN LM-ES and LM-BR approaches for the training and testing datasets. The RMSE and 
R2 for the testing dataset were reasonable in both models and were even greater than the error on 
the training dataset, indicating suitable generalizability. Overall, the autoregressive predictive 
models seemed to be more powerful than the static modes by producing lower errors and greater 
R2. 
 

 

(a) Training Subset                                               (b) Testing Subset 

Figure 39. Measured vs Predicted PCI of Training (a) and Testing (b) Subsets Using the 
ANN LM-ES Autoregressive Algorithm 
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(a) Training Subset                                               (b) Testing Subset 

Figure 40. Measured vs Predicted PCI of Training (a) and Testing (b) Subsets Using the 
ANN LM-BR Autoregressive Algorithm 

The predictive performance of the trained ANN models was evaluated using the independent 
testing dataset as shown in figure 41. The models produced higher errors on the independent testing 
dataset. 
 

 

(a) ANN LM-ES Autoregressive Model                (b) ANN LM-BR Autoregressive Model 

Figure 41. Measured vs Predicted PCI on Independent Testing Dataset  
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3.4.6  PCI Prediction Using SVM—Autoregressive Model 

Table 8 lists the optimal hyperparameters for the autoregressive model resulting from the 10-fold 
cross-validation analysis. The scatter plot of actual versus predicted PCI values for the testing 
dataset from all 10 folds is in figure 42. The autoregressive SVM model was more accurate than 
the static model. The trained SVM model was tested with the independent testing dataset as shown 
in figure 43. The SVM model performance was inferior for new sets of data, as determined by 
higher R2 for the testing dataset. 
 

Table 8. SVM Autoregressive Model Hyperparameters 

SVM Model Hyperparameter Value 
Kernel function Gaussian 
Kernel scale, γ 5 
Penalty parameter, C 4 
Precision margin, ε 0.001 

 

 
Figure 42. Measured vs Predicted PCI in the SVM Autoregressive Model 
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Figure 43. Performance of the SVM Autoregressive Model on Independent Testing Dataset 

3.4.7  PCI Prediction Using RF—Autoregressive Model 

The following hyperparameters yielded the best performance: 
 
• Number of trees in the forest = 100 
• Minimum leaf size = 3 
• Minimum number of samples required to split an internal node = 5 
• Number of learning cycles = 30 
 
Figures 44 and 45 show the scatter plots of predicted versus measured PCI on the cross-validation 
test data and the independent testing data. The trained RF model yielded acceptable performance 
on the independent test data as determined by consistent R2 and RMSE.  
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Figure 44. Measured vs Predicted PCI in the RF Autoregressive Model 

 

 
Figure 45. Performance of the RF Autoregressive Model on Independent Testing Dataset 

3.4.8  Comparison of Autoregressive Models for PCI Prediction 

Table 9 summarizes the autoregressive ML model performance in predicting PCI. The 
performance of four autoregressive models was evaluated in this section using data from two 
runway sections that were set aside for independent testing. The PCI of section 20C of CMH RWY 
10L-28R was measured at ages 2, 4, 6, 9, 12, and 15 years. The measured PCI of 80 at the age of 
4 years was used as the base value, and the subsequent PCI values were calculated incrementally 
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at similar age intervals as the measured data. The predicted PCI values using the four ML models 
were compared to the measured values as shown in figure 46. The figure shows that the ANN and 
RF models underpredicted PCI by a large margin for the age beyond 8 years. SVM model 
prediction was closer to the measured PCI, but the error increases as the pavement age increases. 
One reason for the high discrepancy could be an unusual deterioration trend for this section, where 
the PCI remained almost unchanged after age 6. 
 

Table 9. Summary of Model Performance in Predicting PCI—Autoregressive Models 

Model Network Architecture 

Model Testing 
Subset 

Independent Testing 
Subset 

RMSE RRSE R2 RMSE RRSE R2 
ANN LM 1-3-1 6.9 12.8 0.88 9.2 12.9 0.8 
ANN BR 1-3-1 5.8 10.5 0.91 8.8 13.6 0.8 
SVM  Gaussian kernel 8.6 26.8 0.8 7.5 11.1 0.8 

RF Bagged ensemble of 
trees 7.3 19.7 0.9 6.1 8.3 0.9 

 

  
 

Figure 46. Comparisons of Performance of Autoregressive Models to the Measured PCI, 
CMH RWY 10L-28R 

PCI data for section 4B of MCI RWY 9-27 were measured at the approximate ages of 4, 8, 12, 14, 
17, and 18.5 years. The measured PCI of 74 at the age of 8 years was used as the base value, and 
the subsequent PCI values were calculated incrementally at the age intervals concurrent with the 
measured data. The predicted PCI values using the four ML models were compared to the 
measured values, as shown in figure 47. All the models underpredicted the PCI. The gap in 
prediction could be due to unusually good performance of this pavement section, where the PCI 
remained above 70 after 14 years. It is also due to the fact that the primary predictor in these 
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models is pavement age, which may not be able to explain all the variability of the pavement 
performance. 

 

 
 

Figure 47. Comparisons of Performance of Autoregressive Models to the Measured PCI, 
MCI RWY 9-27 

4.  IDENTIFICATION OF THE MOST INFORMATIVE FEATURES FOR PAVEMENT 
PERFORMANCE 

4.1  INTRODUCTION 

The fundamental goal of a data-driven approach to pavement performance modeling is to identify 
and characterize relationships between a series of features (sometimes referred to as predictors or 
independent variables) in the data and a target (which is the performance metric). In the 
deterioration models presented in previous sections, the pavement age was the only feature 
considered. The resulting models had relatively high errors, suggesting that the pavement age alone 
cannot explain all the variation in pavement performance. Pavement performance is influenced by 
various interacting features such as: climate and drainage conditions, traffic, pavement structure 
and material properties, and quality of construction. Maintenance history may also play a major 
role. Pavement performance models are typically underspecified, meaning that the predictors do 
not fully represent the underlying factors inducing pavement deterioration. One reason is that the 
complete set of predictors is not often available, because acquiring it is difficult and expensive. 
The other reason is the inherent uncertainty in the quality of predictors, e.g., variability in 
construction materials and variation in environmental and traffic loads over time. Prediction 
models can also be over-specified, typically by including a large set of predictors in the hope that 
they will capture some significant part of the variation in pavement performance. Underspecified 
models tend to have low predictive accuracy and robustness. In over-specified models, by contrast, 
the ML learning process is more complicated and the chance of overfitting is high, especially when 
the set of incorporated features is large in comparison with the number of samples. The presence 
of a large number of insignificant predictors tends to increase the prediction variance, making the 
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predictive model unreliable. In addition, an increased number of features increases the difficulty 
in exploring the effect of each feature on the prediction. 
 
The historical climate data are the most accessible feature in the PA40 database for predicting 
pavement performance. Seventeen climate variables that may influence the pavement performance 
were initially identified in this study. Given that the performance data are only available for 11 
airports with flexible pavements, there are more independent variables than the number of climate 
locations. This may pose challenges in developing reasonable predictive models. Therefore, it is 
desirable to select or construct a subset of features that is useful to build a good prediction model.  
 
The objective of this section is to identify the key environmental (i.e., climate or weather) variables 
that affect the pavement performance. The candidate environmental variables will then be included 
as input variables in the ML models to improve their predictive performance. This study uses data-
driven approaches based on supervised and unsupervised learning algorithms.  

4.2  IDENTIFYING THE ENVIRONMENTAL VARIABLES 

This study used the PA40 database to examine the influence of weather on the performance of 
airfield pavements. Weather records for each airport were obtained from the National Oceanic and 
Atmospheric Administration (NOAA) and added to the PA40 database. PA40 incorporates a 
method to summarize the weather events experienced by a given pavement section between the 
date of construction and the date of a subsequent inspection. Details of how weather events were 
summarized and the implementation in PA40 can be found in the document entitled, 
“Development of Historical Climate and Weather Data Links Between PA40 and Existing FAA 
Databases,” which is included in this report as appendix A. 
 
Environmental variables (table 10) in the PA40 database are typically represented as the 
summation or average of 6 principal variables: (1) temperature, (2) precipitation, (3) dew point, (4) 
solar radiation, (5) sky cover, and (6) wind speed—each evaluated between the last major 
construction date and the date of a given inspection. Another variable, average daily temperature 
difference, was defined for this study as the average of high temperature minus low temperature 
for each day of a given year. Daily temperature fluctuations induce a temperature gradient through 
the depth of the asphalt. An extreme temperature gradient may be associated with certain types of 
distresses, such as block cracking in flexible pavements.  
 
Weather variables can be characterized by both cumulative and average values. Some of the 
variables that were originally presented as cumulative values in PA40 were calculated as average 
values between the last rehabilitation/construction date and inspection in this study. Table 10 lists 
the weather variables both ways. As shown in the table, seven of the weather variables can be 
expressed as either cumulative or average values, but six others can only be expressed as average 
values. 
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Table 10. Environmental Variables Used in This Study 

Average Environmental Variables Cumulative Environmental Variables Units 
Freeze degree days (FDD) Freeze degree days (FDD) °F-days 
Freeze-thaw cycles (FThC) Freeze-thaw cycles (FThC) cycles 
Days temperature over 90°F (Temp90) Days temperature over 90°F (Temp90) days 
Days precipitation (DPrec) Days precipitation (DPrec) days 
Total precipitation (TPrec) Total precipitation (TPrec) inches 
Freeze precipitation days (FPD) Freeze precipitation days (FPD) days 
Hydration days (HydD) Hydration days (HydD) days 
Average daily temperature (Avg Temp) 

 
°F 

Average daily temperature difference (Temp 
Diff) 

 °F 

Relative humidity (RH) 
 

% 
Average wind speed (Wind) 

 
mph 

Thornthwaite index 
 

% 
Sky cover 

 
oktas 

 
An initial visual examination was performed on each weather variable to develop an understanding 
of the range and variability of the data in each airport’s database. To this end, the average annual 
values of each climate variable were calculated from 1990 to the end of 2016. Box plots were 
drawn to provide a visual summary of the distribution of each climate data based on five numbers: 
minimum, first quartile (25%), median, third quartile (75%), and maximum. The box plots are 
presented in figure 48 for 10 airports with flexible pavements. Box plots can also be useful in 
detecting right and left skewness. Days Precipitation (DPrec) and Total Precipitation (TPrec) 
roughly follow the same pattern. Expect for SFO, the precipitation patterns are also very similar 
to the patterns for hydration days (HydD) and relative humidity (RH). Two sites with similar winter 
weather conditions (e.g., similar FDD), such as BOS and Salt Lake City International Airport 
(SLC), can have different summer conditions (as indicated by Temp90). Additionally, sites with 
approximately similar precipitation may have very different cold weather conditions as indicated 
by FDD.  
 
The Thornthwaite index is a moisture index that is determined based on both precipitation and 
potential evapotranspiration characteristics of a specific region (Yue & Bulut, 2014). The 
Thornthwaite index is a measure of moisture in pavement unbound layers, with a higher index 
value indicating higher internal moisture. Precipitation alone cannot determine whether a region 
has moist or dry pavement layers. Hence, an airport located in a region with high precipitation, but 
also a high evaporation rate, (such as MIA) does not exhibit high Thornthwaite index. 
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Figure 48. Variation of Environmental Variables for Flexible Pavements in a 26-Year Window 
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Figure 48. Variation of Environmental Variables for Flexible Pavements in a 26-Year Window 
(Continued) 

 
Certain weather variables exhibited strong temporal behavior, i.e., their values fluctuated in a wide 
range over the years the performance data were collected. As an example, figure 49 shows the 
annual variation of FDD at BOS, where year-over-year ratios were as high as 5:1. This indicates 
that in some years the pavements were exposed to much more severe weather conditions than in 
other years, which itself could have accelerated pavement deterioration. However, the effect of 
individual weather events is anticipated to be residual, i.e., there is no immediate deterioration in 
the pavement condition as a consequence of an event. 
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Figure 49. High Temporal Variations in FDD at BOS 

4.3  CORRELATIONS AMONG ENVIRONMENTAL VARIABLES 

A common problem in over-specified ML models occurs when two or more predictors are highly 
correlated. This phenomenon is called multicollinearity, or just collinearity. High collinearity 
between predictors means that variables in the collinear set share substantial amounts of 
information (Dormann et al., 2013). Collinearity exists in many real-world data such as 
climate/weather data. The collinear variables are often different manifestations of the same 
process. Collinearity also occurs when the whole set of information is described by relative 
quantities. For example, FDD and Temp90 are two extreme representations of temperature, which 
in some regions could have negative correlations. Collinearity may also be caused by inherent 
limitations in data, for example when the sample size is low and predictors are not identically 
distributed in the input domain. Perfectly correlated predictors lead to a mis-specified model. In 
this case, one or more of the perfectly correlated predictors can be omitted because no additional 
information is gained by including them (Guyon & Elisseeff, 2003). High collinearity may 
negatively impact the prediction performance of the model. However, the major problem with high 
collinearity is that it makes it difficult for the predictive model to assess the relative importance of 
the predictors with respect to the response. In that case, the model becomes sensitive to small 
changes in the data set, and the model becomes unstable due to a large inflation of the parameter 
variance. This makes it difficult to interpret the final model and to isolate the effects of collinear 
variables (Dormann et al., 2013). Another problem in a predictive model with high collinearity 
between the predictors is that the model will not be reliable for extrapolating the prediction beyond 
the range of sampled data. This is because the collinearity patterns are likely to change from one 
data set to another. For example, precipitation and moisture could be highly correlated in some 
climate regions, but not in other regions. Also, the correlation may change over the decades. 
 
The current study involves many environmental variables, but the airports in the PA40 database 
were not sampled randomly across the states. Since the airport locations do not cover all 
geographic and climatic regions, a complete range of potential climate situations may not exist in 
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the data. Therefore, certain correlations that may appear redundant should not be eliminated 
without engineering judgment. 

4.3.1  Pairwise Correlation  

The most popular diagnostic of collinearity is the pairwise correlation coefficient (R). Spearman 
and Pearson pairwise correlations were considered in this study. The Spearman’s correlation is a 
statistical measure of the strength of a monotonic relationship between paired data, i.e., it 
determines if one variable increases or decreases in relation to other variable. This method does 
not require a normal distribution of the data and is not limited to a linear relationship between the 
variables. Pearson measures the linear correlation between two variables, and its value is exact 
when both variables come from a normal distribution. 
 
This study examines the temporal dependency among climate variables based on yearly 
fluctuations. The correlation matrices in figures 50 and 51, for the Pearson and Spearman 
correlation types respectively, illustrate the strength of pairwise linear relationships. The 
correlation plots in figures 50 and 51 use climate data spanning from 1989 to 2016 from 10 airports 
with flexible pavements. These graphs help to explain the correlations visually as a matrix of 
pairwise scatter plots. The diagonal of the matrix illustrates the histogram of each climate variable. 
The correlation coefficients (CC) are equal to the slopes of the displayed least-squares lines in 
those two figures. The CC values highlighted in red indicate a significant t-statistic or p-value. 
Establishing a threshold for collinearity assessment is a subjective matter and depends on the type 
of data. As a rule of thumb, pairwise correlations exceeding a threshold of 0.7 are considered “high 
collinearity.” Based on this threshold value and the Pearson’s correlations, the number of freeze-
thaw cycles (FThC) is highly negatively correlated to the average daily temperature (Avg Temp) 
and positively correlated to FDD. Likewise, the variable Temp90 is negatively correlated to 
average RH and positively correlated to the average daily temperature difference (Temp Diff). The 
Spearman’s correlation values indicate that Avg Temp is negatively correlated to FDD and FThC, 
and FDD is positively correlated to FThC. For both Pearson’s and Spearman’s correlations, the 
three variables DPrec, TPrec, and Thornthwaite are highly positively correlated to one another. 
RH is also highly correlated to the number of HydD according to both correlation types. Overall, 
the correlation results indicate that there are low and moderate strength pairwise correlations 
among most of the environmental variables, but only a few of the correlations can be considered 
high. Also, no environmental variable is correlated with all other variables. 

4.3.2  Condition Number 

While the correlation matrix provides one value per variable pair, other measures, such as 
condition number (CN), estimate a single value to describe the degree of collinearity. The CN is 
equal to the square root of the ratio of the largest to the smallest eigenvalue of the predictor matrix, 
and is often used in multivariate regressions to characterize the overall sensitivity of the model 
estimates to changes in the predictors. The calculated CN of the environmental variable matrix is 
315.5, which is well above the benchmark of 30 (Belsley et al., 1980). This could suggest that 
prediction models may suffer from collinearity, and the prediction error may be high. 
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Figure 50. Pearson Correlation Matrix 
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Figure 51. Spearman Correlation Matrix 
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4.3.3  Variance Inflation Factor  

Another common collinearity diagnostic is the variance inflation factor (VIF). VIFs are the 
diagonal elements of the inverse of the correlation matrix (Booth et al., 1994). Calculated VIFs of 
the environmental variables are listed in table 11. A VIF equal to 1 indicates no collinearity 
condition. VIF values greater than 10 can be a sign of collinearity (Belsley, 1980; Hair et al., 1995). 
 

Table 11. Environmental Variable VIFs 

Climate Variable VIF 
Avg temp  31.8 
FThC 7.7 
FDD 2.7 
Temp90 15.1 
DPrec 5.8 
TPrec  35.7 
Thornthwaite index 19.8 
RH 37.6 
HydD 21.2 
Temp Diff 10.4 

4.3.4  Belsley Collinearity Diagnostics 

Belsley collinearity diagnostics is another technique for assessing the strength and sources of 
collinearity among variables. In the Belsley method, the variance decomposition proportions are 
calculated, which gives more specific information on the eigenvalues’ contribution to collinearity 
(Belsley et al.,1980). A condition index in the Belsley formulation is defined as the ratio of the 
maximum singular value of the predictor matrix to the singular value of each predictor. High 
indices indicate separate near-dependencies in the data. Belsley formulated a method for 
identifying the specific predictors involved in each near-dependency. Belsley’s method provides 
a measure of how important those dependencies are in prediction. The diagnostic simulations 
recommend that condition indices in the range of 5 to 10 demonstrate weak dependencies, and 
those in the range of 30 to 100 exhibit moderate to high dependencies. The results of the Belsley 
simulation are presented in table 12. The last two rows have a condition index larger than the 
tolerance of 30. In these rows, the Avg Temp, Temp Diff, TPrec, RH, and HydD variables have 
variance decomposition proportions exceeding the tolerance of 0.4. This suggests that these 
environmental variables exhibit multicollinearity. The tolerance for variance decomposition 
means that no variable attribute should be more than 0.4 to any one eigenvalue. 
  

https://www.mathworks.com/help/econ/collintest.html#bucjrw5
https://www.mathworks.com/help/econ/collintest.html#bucjrw5
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Table 12. Summary of Belsley Collinearity Diagnostics Simulation 

Singular 
Value 

Condition 
Index 

Avg 
Temp FThC FDD Temp90 DPrec TPrec Thornthwaite RH HydD 

Temp 
Diff 

2.7622 1 0 0.0006 0.0021 0.0002 0.0002 0.0002 0.0006 0 0.0001 0.0001 
1.1541 2.3933 0 0.0004 0.0058 0.0142 0 0.0001 0.023 0 0 0.0003 
0.7597 3.636 0.0001 0.0169 0.1726 0.001 0.0004 0.0021 0.0021 0.0001 0.0009 0 
0.4949 5.5808 0 0.0002 0.0104 0.0532 0 0.0016 0.1377 0.0006 0.0048 0 
0.3576 7.7238 0.0001 0.1868 0.5419 0.0021 0.0006 0.0058 0.0049 0 0.0001 0.0016 
0.235 11.7553 0 0.0652 0.0261 0.0107 0.0709 0.0411 0.1876 0.0008 0.0272 0.009 
0.1324 20.8659 0.0117 0.1004 0.0097 0.1871 0.0401 0.0891 0.1135 0.0038 0.1514 0.0407 
0.0986 28.0092 0.0097 0.0969 0.0085 0.0945 0.787 0.2792 0.0545 0.0049 0.0628 0.0039 
0.0733 37.6596 0.0086 0.1666 0.0101 0.433 0.0073 0.1581 0.1048 0.1039 0.0123 0.455 
0.0253 109.0731 0.9698 0.366 0.2129 0.2041 0.0934 0.4227 0.3713 0.8859 0.7402 0.4894 

4.4  IMPLEMENTATION OF DIMENSIONALITY REDUCTION METHODS ON 
ENVIRONMENTAL VARIABLES: FEATURE SELECTION 

The focus of this section is on implementing dimensionality reduction techniques for those 
environmental variables initially considered as predictors for pavement performance. Feature 
selection methods are evaluated to decrease the dimensionality of the feature space. Feature 
selection is the process in ML that reduces the dimensionality of data by identifying and removing 
a subset of irrelevant or redundant variables that can decrease the model accuracy and quality.  

4.4.1  Feature Selection Methods 

There are two general feature selection approaches: feature ranking and subset selection (Bolón-
Canedo et al., 2013). Feature ranking evaluates relevant variables based on their individual 
predictive power by assigning weights according to their degrees of relevance. Subset selection 
produces candidate feature subsets that are useful as predictors based on a certain search strategy. 
Ranking algorithms can be inefficient, particularly if some of the features are redundant. 
Alternatively, subset selection methods may exclude some redundant but relevant variables 
(Guyon & Elisseeff, 2003). Feature selection methods can also be separated into three categories: 
filter, wrapper, and embedded. 
 
Filter methods select a subset of features based on their importance, considering their variance and 
relevance to the response. Selecting important features is part of the preprocessing step, and there 
is no learning algorithm involved in filter approaches. Wrapper methods use a learning algorithm 
to evaluate the relative benefit of adding or removing a feature from the feature subsets. The 
evaluation is performed based on a selection criteria by directly measuring the variation in model 
performance stemming from addition or removal of a feature. The algorithm is said to have 
achieved a good performance when its stopping criteria are met. Embedded methods perform 
feature selection as part of the model training process and are usually specific to given learning 
machines. 
 
Filters are further divided into univariate and multivariate methods. Univariate methods consider 
each feature separately and ignore feature dependencies. Multivariate filter methods account for 
feature inter-dependency and are able to find relationships among the features. 
 

https://www.mathworks.com/help/econ/collintest.html#bucjrw5
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The feature selection methods evaluated in this study employ a supervised learning scheme, i.e., a 
set of predictors is assessed against a target (in this case, anti-SCI). The following feature selection 
methods were used: 
 
4.4.1.1  Filter Methods 

• Pearson Correlation Coefficient (R) is a fast way for screening the relevance of an 
individual feature by measuring its correlation with the target. Pearson correlation is a 
univariate feature ranking method that can only detect linear dependencies between the 
variable and target.  

 
• Correlation-based feature selection (CFS) is a subset selection multivariate filter algorithm. 

This algorithm evaluates the significance of a subset of features by examining the 
individual predictive ability of each feature alongside the degree of redundancy or 
correlation between them (Hall, 1999). Irrelevant features are disregarded due to their low 
correlation with the target. Redundant features are removed due to their high correlation 
with one or more of the remaining features. 

 
• RReliefF is a modified version of the original Relief algorithm (Kira & Randell, 1992). 

The original Relief, which was proposed for classification problems, “calculates a proxy 
statistic to estimate feature … ‘relevance’ to the target” (Urbanowicz et al., 2018). The 
proxy statistic can be thought of as a weight or score. Relief randomly picks a sample of 
instances from the data and for each instance, it finds the nearest neighbor from the same 
and opposite class based on the Euclidean distance measure. The underlying assumption is 
that a useful feature should differentiate between data objects and different classes (Bolón-
Canedo et al., 2013). ReliefF is an extension of Relief for classification and has the ability 
to deal with multiclass problems. ReliefF finds k, the nearest neighbor from every other 
class, and averages the weight update based on the prior probability of each class. RReliefF 
for regression is similar to ReliefF. RReliefF tries to penalize the predictors that give 
different values to neighbors with the same response values, and reward predictors that 
give different values to neighbors with different response values. The RReliefF algorithm 
does not assume the conditional independence of the features, and “can correctly estimate 
the quality of [features] in problems with strong dependencies between [features]” 
(Robnik-Šikonja & Kononenko, 2003). 
 

4.4.1.2  Wrapper Methods 

Wrapper methods were also implemented using two learners: linear regression and SVM. Cross-
fold validation was used to estimate the benefits of adding or removing a feature from the feature 
subset and to evaluate the model accuracy. A forward stepwise selection approach was used in 
which the algorithm starts with an empty set of features and searches forward by adding features 
until the performance does not improve further. Variables that most improve the model are 
selected. A Gaussian kernel function was used for SVM learning. 
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4.4.2  Feature Selection Results 

The performance data from keel sections of 10 runways with flexible pavements were used. Two 
approaches were used for implementation of feature selection on climate/weather variables. In the 
first approach, climate/weather variables were treated as sums, i.e., cumulative values from the 
date of construction/rehabilitation to the date of inspection. For each pavement performance record 
in the dataset, six cumulative weather variables were considered as predictors and the measured 
anti-SCI was considered as the target. Pavement age at the time of anti-SCI measurement and the 
previous anti-SCI measurement were also considered as input variables. In the second approach, 
weather variables were treated as averages, i.e., average values of weather variables over a given 
period of time (between the last rehabilitation and the inspection date, or between two inspections). 
Eleven weather variables were considered as the predictors, and the rate of anti-SCI deterioration 
(change in anti-SCI divided by the time between rehabilitation and inspection, or between two 
inspections) was considered as the target. Since the rate of anti-SCI deterioration is not constant, 
particularly for ages over 10 years, only performance data for pavements less than 10 years old 
were used in the second approach. This restriction was intended to isolate, at least in part, the 
influence of the pavement age on the deterioration rate when performing the feature selection 
analysis. Table 13 lists the input and output variables for both approaches. 
 

Table 13. Input and Output Variables Used in Feature Selection Analysis 

Approach Input Variables Target 

Approach 1: 
Cumulative 

Climate Variables 

FThC 

Anti-SCI 

FDD 
Temp90 
DPrec 
TPrec  
HD 
Age 
Previous Anti-SCI 

Approach 2: 
Average Climate 

Variables 

FThC 

Rate of anti-
SCI change 

FDD 
Temp90 
DPrec 
RH  
HydD 
TempDiff 
TPrec  
Sky Cover 
Wind  
Thornthwaite Index 

 
The “Attribute Selection” module within the Waikato Environment for Knowledge Analysis 
(Weka) data mining and ML software program (Eibe et al., 2016), developed at the University of 
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Waikato in New Zealand, was used to perform the feature ranking. For Approach 1, table 14 
summarizes the rank of each feature and the associated weights or scores as calculated by each 
ranking algorithm. Pavement age and previous anti-SCI are the most informative variables, while 
freezing degree days and freeze-thaw cycles were the least informative. Table 15 summarizes the 
subset of informative features as determined by several subset selection algorithms. The sequence 
in each column does not imply any ranking of variables. As discussed, these algorithms search for 
dependencies among the features, and remove redundant or correlated features that have minimal 
impact on the prediction performance. Pavement age, previous anti-SCI, and the number of days 
with a high temperature above 90ºF are all identified as informative variables in all methods. The 
wrapper methods retained freezing degree days, freeze-thaw cycles and total precipitation as 
relevant features. 
 

Table 14. Feature Selection Using Ranking Algorithms in Approach 1 

Filter Methods Wrapper Methods 
Pearson Correlation RReliefF SVM—Gaussian Kernel Linear Regression 

Input 
Variable R 

Input 
Variable Score 

Input 
Variable Score Input Variable Score 

Previous Anti-SCI 0.77 Previous 
Anti-SCI 0.040 Age 12.3 Previous Anti-

SCI 5.7 

Age -0.77 Temp90 0.022 Previous Anti-
SCI 10.5 Age 5.6 

DPrec -0.63 Age 0.016 Temp90 9.3 DPrec 3.5 
Temp90 -0.59 TPrec 0.010 DPrec 9.1 Temp90 2.9 
TPrec -0.57 HydD 0.009 HydD 8.0 TPrec 2.8 
HydD -0.57 DPrec 0.009 TPrec 7.6 HydD 2.7 
FThC -0.54 FDD 0.006 FDD 7.1 FThC 2.4 
FDD -0.50 FThC 0.005 FThC 6.7 FDD 2.0 
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Table 15. Feature Selection Using Subset Selection Algorithms in Approach 1 

Filter Method Wrapper Methods 
CFS SVM—Gaussian Kernel Liner Regression 

Age (year) Age (year) Age (year) 
Previous Anti-SCI Previous Anti-SCI Previous Anti-SCI 
Temp90 FThC FThC 
  FDD FDD 
  Temp90 Temp90 
  TPrec  DPrec 
  HydD   

 
For Approach 2, table 16 summarizes the rank and score of each weather variable. Table 16 shows 
that both wrapper methods and the Spearman correlation gave the highest rankings to the average 
daily temperature difference and precipitation variables, and lower rankings to freezing degree 
days and freeze-thaw cycles. The correlation coefficients (R) are relatively low and for some of 
the variables, the sign of the correlation contradicts engineering expectations. Moreover, the 
ranking scores are roughly the same for all the climate variables. This suggests that the rate of anti-
SCI reduction is not significantly correlated to any of the climate/weather variables. In other 
words, no individual climate/weather variable can describe the changes in anti-SCI deterioration. 
In addition, the feature rankings obtained by filter and wrapper methods are inconsistent. One 
reason for this inconsistency is the different criteria used by the algorithm for selection of features. 
The inconsistency may also be due to the insignificant correlation between the features and the 
target.  
 
Table 17 summarizes the subsets of relevant features as identified by several filter and wrapper 
methods. The CFS method identified the TempDiff as the only relevant feature. The wrapper 
methods identified FDD and DPrec as relevant features in addition to TempDiff. 
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Table 16. Feature Selection Using Ranking Algorithms in Approach 2 

Filter Methods Wrapper Methods 
Pearson Correlation ReliefF SVM—Gaussian Kernel Linear Regression 

Input 
Variable R Input 

Variable Score Input 
Variable Score Input 

Variable Score 

Temp Diff 0.28 Sky Cover 0.023 Temp Diff 3.1 Temp Diff 0.1 
DPrec -0.21 Avg temp 0.019 TPrec 3.1 TPrec 0.0 
TPrec -0.20 RH 0.013 DPrec 3.1 DPrec 0.0 

Temp90 0.16 Wind  0.013 Temp90 3.1 Temp90 0.0 
RH -0.15 FThC 0.011 RH 3.1 Sky Cover 0.0 

FDD 0.11 TPrec 0.010 HydD 3.1 Thornthwaite 0.0 
Wind  -0.09 Thornthwaite 0.009 Thornthwaite 3.1 Avg temp 0.0 
HydD -0.09 Temp Diff 0.009 Sky Cover 3.1 Wind  0.0 

Thornthwaite -0.07 DPrec 0.01 FDD 3.07 RH -0.01 
FThC 0.07 Temp90 0.01 Wind  3.06 HydD -0.02 

Avg temp 0.05 FDD 0.01 Avg temp 3.04 FDD -0.02 
Sky Cover -0.05 HydD 0.00 FThC 3.04 FThC -0.02 

 
Table 17. Feature Selection Using Subset Selection Algorithms in Approach 2 

Filter Method Wrapper Methods 
CFS  SVM—Gaussian Kernel Linear Regression 

Temp Diff Temp Diff Temp Diff  
FDD FDD  
DPrec DPrec  

RH 
 

 
HydD 

 
 

Temp90 
 

 
TPrec 

 
 

Thornthwaite 
 

4.4.3  Discussion and Conclusion 

Table 14 shows that the Pearson correlation coefficient between age and anti-SCI (-0.77) is greater 
than the correlation of any cumulative weather variable to anti-SCI. This means that none of the 
weather variables alone is a better predictor than age alone. Since the cumulative climate variables 
in approach 1 are dependent on pavement age, any high correlation with anti-SCI will not imply a 
cause of performance deterioration. On the other hand, a low correlation of a weather variable to 
performance does not imply that the variable is useless. For example, in table 14 cumulative FDD 
has the lowest correlation with anti-SCI, which goes against the common expectation. The reason 
for this low correlation is that FDD is a variable representing an extreme weather condition, 
making it a significant factor in cold weather regions but an insignificant factor in warmer regions. 
Figure 52 illustrates the scatter plot of anti-SCI versus cumulative FDD for each pavement section 
in the database. The figure shows two distinct clusters of data. One cluster includes the data from 
three airports in no-freeze regions (e.g., SFO, TUS, and MIA), and the other cluster represents the 
rest of the airports located in the northern and central parts of the United States. The FDD has a 
very low correlation with anti-SCI in those airports with nearly zero FDD, and a relatively high 
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correlation with anti-SCI for the rest of the airports with a higher probability of freezing events. 
Evaluation of the influence of weather inputs on pavement performance would be more meaningful 
if individual distress types were considered, as opposed to an overall surface condition indicator 
such as anti-SCI. The specific types of pavement distresses contributing to anti-SCI deterioration 
can differ greatly from one climate region to another. For example, while thermal cracking due to 
severe freezing is a common type of distress in a cold region, block cracking and rutting could be 
primary distresses in an airport with warm weather and high solar radiation. Therefore, it is 
anticipated that a climate variable such as FDD will have a high correlation with particular distress 
types, such as thermal cracking. In this case, FDD can be described as the primary factor causing 
thermal cracking.  

 

 
  

Figure 52. Correlation of Anti-SCI With Cumulative FDD in Northern and Southern Airports 

Ranking algorithms that score variables individually and independently of each other are not able 
to determine which combination of variables would give the best performance. Ranking algorithms 
can give some information on how relevant each variable is to performance, but not enough to 
determine which variables should be kept or discarded for the prediction of pavement performance. 
The results of ranking algorithms on the average climate variables in approach 2 showed that the 
variation in the rate of anti-SCI deterioration cannot be related to any individual climate variable. 
However, it is likely that when all the climate variables are taken together, they can describe some 
variation in anti-SCI.  

4.5  IMPLEMENTATION OF DIMENSIONALITY REDUCTION METHODS ON 
ENVIRONMENTAL VARIABLES: FEATURE CONSTRUCTION 

Feature construction methods aim to reduce the dimensionality of the data by constructing new 
features from the original feature set. In this section, two unsupervised learning methods were 
employed for dimensionality reduction of the feature space by constructing or extracting new 
features from existing features. The first method is a clustering method based on the k-means 
algorithm, and the second method is PCA. 
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4.5.1  Unsupervised Cluster Analysis 

Cluster analysis is an unsupervised learning technique used primarily to explore homogenous 
subsets of data objects within a dataset. In an ML model, clustering can be applied separately to 
both the input and output domains using only the information found in each domain, regardless of 
the dependencies between the inputs and the target. Clustering is the process of grouping data 
objects into clusters such that objects within each cluster have the highest similarity to one another, 
while also having the highest dissimilarity from objects in other clusters. Two data objects are 
grouped according to their mathematical similarity. For a dataset with m data objects (sample or 
observation) and n features or attributes, most clustering techniques convert the data matrix into a 
m × m “distance matrix” of inter-object similarities or dissimilarities (Milligan, 1996). Two 
common similarity measures are based on Euclidean distance or correlation (Pearson) between 
two objects. Two objects are considered to be close to each other when the dissimilarity is small. 
Choosing a correct similarity measure is a critical step in a clustering analysis. Distance measures 
are recommended when data samples are small, the magnitude of data is important, and the features 
are not correlated (Gower & Legendre, 1986). However, different similarity measures can be tested 
to determine which ones produce better results given the nature of data. 
 
Another critical step is choosing a suitable clustering algorithm. Two popular types of clustering 
are partitional and hierarchical. A partitional clustering divides a set of data objects into mutually 
exclusive subsets (clusters) where each data object belongs to one subset only (Tan et al., 2013). 
Hierarchical clustering produces a nested hierarchy of similar groups of objects, according to a 
pairwise distance matrix of the objects (Keogh et al., 2001). The most commonly used partitional 
clustering algorithm is k-means. 

4.5.2  Clustering Using k-means  

An algorithm called k-means is an iterative partitioning algorithm that assigns subsets of data 
objects to exactly one of the k clusters defined by their centroids (David & Vassilvitskii, 2007). 
The number of k clusters is chosen before the algorithm starts. The k-means algorithm initializes 
centroids by randomly assigning data objects to centroids of each cluster and then assign data 
objects to a cluster such that the similarity within the cluster is at the maximum. The most 
commonly used similarity measure in a k-means algorithm is the Euclidean distance. The 
algorithm opts to minimize the objective function which is the Euclidean distance between the data 
objects and the cluster’s centroids. The objective function is expressed in equation 32: 
 

min���𝑥𝑥𝑖𝑖 − 𝐶𝐶𝑘𝑘�
2

𝐾𝐾

𝑘𝑘=1

𝑚𝑚

𝑖𝑖=1

                                                         (32) 

 
where, m is the number of data objects, k is the number of pre-defined k clusters, x is the 
coordinates of data objects, and C is the centroid of each cluster. After each iteration, the centroid 
of each cluster is updated based on the data objects assigned to that cluster. The iterations stop 
when the centroids reach a steady state, i.e., there are only a few objects changing their clusters. 
While k-means can be applied simply to any type of data, it poses some disadvantages. One is that 
the number of clusters k must be determined as an input before starting the algorithm. The other 
limitation is that since the initial centroids are assigned randomly, the resulting clusters will be 
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different each time the algorithm is executed. Despite these limitations, k-means is well suited for 
the type of data in this study.  

4.5.3  Clustering of Environmental Data Using k-means 

Cluster analysis was conducted to find patterns in weather variables that are not intuitively 
obvious. Two approaches were implemented to group the performance data based on their climatic 
characteristics. In one approach, for each airport, the median or average values of the weather 
variables over the course of data collection were considered as the data objects for clustering. In 
this case, the outcome of the cluster analysis was assigning the airports to regions with similar 
average climate conditions. However, due to temporal behavior of the weather variables, it is 
possible that a weather variable in one geographical location has a significantly lower value than 
the average in that location. For example, despite the higher average number of freezing days in 
BOS than Baltimore/Washington International Thurgood Marshall Airport (BWI), in some years 
the pavement at BWI may have been exposed to more freezing degree days than at BOS. This 
suggests that the use of a single value (average or median) will not be a realistic representation of 
a weather variable with high temporal variations. In the second approach, the time-series weather 
variables in each airport were transformed into subsequences with various-sized sliding windows 
(Zolhavarieh et al., 2014). Subsequence in this context refers to segments of long time-series 
variables, for which the performance data were measured. The size of the sliding window is 
equivalent to the time between two pavement condition inspections or between the inspection and 
the last rehabilitation, for each performance record in the dataset. The data objects for the cluster 
analysis are the averages of each weather variable over the sliding windows. Several weather 
variables can be chosen simultaneously for grouping the datasets into clusters with similar climate 
characteristics. The choice of weather variable was determined based on engineering judgment 
and the collinearity between the variables. Highly correlated variables, as determined in 
section 4.3, were not considered for cluster analysis. Tables 18 and 19 illustrate the possible two- 
and three-way combinations of the weather variables used for clustering. 

Table 18. Possible Combinations of Weather Features for Clustering—Two at a Time 

Variable 1 Variable 2 
FDD TPrec  
FDD Avg Temp 
FThC Temp Diff 
Temp90 TPrec  

 
Table 19. Possible Combinations of Weather Features for Clustering—Three at a Time 

Variable 1 Variable 2 Variable 3 
FDD Temp90 TPrec  
FThC Temp90 Thornthwaite 

 
The k-means algorithm was used for clustering analysis with squared Euclidean as the distance 
metric (see section 4.5.2). The variables at the clusters should be similar within a group and should 
be different between the groups. The optimum number of clusters was found to be three or four 
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clusters depending on the combinations of variables used for clustering. The results of clustering 
are shown in figures 53 through 58. 
 

 
 

Figure 53. Cluster Assignments of the Performance Records Based on FDD and TPrec  

 

 
 

Figure 54. Cluster Assignments of the Performance Records Based on FDD and TempDiff  
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Figure 55. Cluster Assignments of the Performance Records Based on FThC and TempDiff  

 

 
 

Figure 56. Cluster Assignments of the Performance Records Based on Temp90 and TPrec  
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Figure 57. Cluster Assignments of the Performance Records Based on FDD, TPrec, and Temp90  

 

 
 

Figure 58. Cluster Assignments of the Performance Records Based on FThC, Temp90, and 
Thornthwaite Index  

The outcome of cluster analysis can be used to divide the performance data records into clusters 
with homogeneous climatic properties. The high-dimensional climate feature space will be 
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reduced to only one feature, which includes the cluster assignments for each performance record. 
The assigned clusters can be treated as a categorical input variable for developing the ML 
predictive models. The optimal clustering strategies among those evaluated in this study (as 
illustrated in figures 53 to 58) will be the ones that yield the best prediction performance. 

4.5.4  Principal Component Analysis 

PCA is an unsupervised technique for dimensionality reduction of the multivariate feature (input) 
space. This reduction is achieved by transforming the data onto a set of dominant variables known 
as principal components (PC). PC are new uncorrelated variables constructed via linear 
combinations of all input variables (Jolliffe, 2002). The first few principal components account for 
the largest possible variance in the original data set. The dimension of the input space can be 
reduced by eliminating the components with low variance. Through decomposition of the 
covariance matrix of the original input data, the PCA computes the eigenvalue and eigenvectors. 
Each eigenvector is a unit vector in the direction of the new PC coordinate, and the PC with the 
highest eigenvalue explains the most variation. The PC with the highest variance will be used as 
inputs to the ML model under the assumption that they contain the most information. Unlike the 
feature selection approaches, PCA allows for incorporation of all input variables in the 
development of the ML model. Along with dimensionality reduction, PCA eliminates the 
intercorrelation between the features, making the model less likely to overfit. A major 
disadvantage of PCA is that the principal components do not have any physical meaning, making 
it difficult to interpret the influence of specific input variables. 
 
The MATLAB “pca” function was used to perform the PCA. For an m × n matrix, where m is the 
number of observations and n is the number of features (input variables), the PCA returns an n × 
n coefficient matrix that contains coefficients of principal components. Each column of the latter 
matrix contains coefficients for one principal component, and the columns are in descending order 
of component variance. For each pavement performance record in the database, the PCA 
considered the following as input variables: eleven climate variables (evaluated as the average 
value since the previous measurement, or from the last rehabilitation); the pavement age; the 
previous anti-SCI; and the time since the previous anti-SCI. Since the ranges of input variables are 
all different, they were normalized to the range (-1, +1) prior to PCA, ensuring that each variable 
contributes equally to the analysis. Table 20 summarizes the PCA results. The first three PCs 
(highlighted in yellow) explain more than 95% of the total variance of the input variables and can 
be considered inputs to the ML model. The PCs are linear combinations of all 14 variables. Each 
column represents the coefficients of the PC. 
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Table 20. Principal Components and Coefficients of Each Input Variable 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 
Variance % 61.48 21.63 12.09 2.13 1.12 0.83 0.34 0.28 0.06 0.02 0.01 0.01 0.00 0.00 

Age 0.158 -0.085 -0.023 0.175 0.035 0.003 0.103 0.502 -0.082 0.616 0.380 -0.350 -0.134 0.047 
Previous       
Anti-SCI 0.280 0.061 0.509 -0.258 -0.189 -0.573 -0.218 -0.327 -0.090 0.203 0.131 -0.076 -0.016 0.027 

Delta-Time 0.157 -0.088 -0.014 0.110 0.053 -0.083 -0.101 0.200 -0.403 0.156 -0.041 0.811 -0.215 -0.047 
FThC 0.058 -0.031 0.202 0.279 -0.211 -0.101 0.860 -0.174 -0.067 -0.137 0.102 0.070 -0.121 -0.020 
FDD -0.572 -0.501 0.441 0.300 -0.278 0.050 -0.223 0.086 0.001 0.000 -0.008 0.002 0.013 0.004 
Temp90 0.623 -0.342 0.089 0.386 0.013 0.352 -0.180 -0.293 0.264 0.040 -0.134 -0.024 -0.071 0.024 
Dprec 0.074 0.215 0.536 -0.385 -0.030 0.639 0.101 0.124 -0.240 0.058 -0.132 -0.020 -0.007 -0.001 
RH 0.138 0.075 0.201 -0.086 -0.131 -0.225 0.099 0.538 0.621 -0.040 -0.375 0.162 -0.005 0.080 
HydD -0.056 0.734 0.116 0.592 -0.193 0.039 -0.233 0.002 -0.021 -0.009 -0.001 -0.010 -0.001 -0.001 
Temp Diff 0.214 -0.094 0.032 0.135 -0.033 -0.087 0.051 0.191 -0.256 -0.053 -0.088 -0.022 0.866 -0.226 
TPrec 0.104 0.014 0.199 -0.033 0.172 0.083 -0.107 0.164 0.239 -0.443 0.758 0.188 0.064 -0.078 
Sky Cover 0.159 -0.077 0.008 0.071 0.008 -0.096 -0.063 0.207 -0.339 -0.404 -0.066 -0.180 -0.046 0.768 
Wind  0.159 -0.070 0.034 0.044 0.011 -0.142 -0.104 0.251 -0.259 -0.403 -0.182 -0.334 -0.399 -0.583 
Thornthwaite -0.138 0.036 0.338 0.204 0.867 -0.154 0.087 -0.058 0.018 0.065 -0.172 -0.045 0.016 0.022 
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4.6  ANALYSIS OF TRAFFIC DATA  

Historical traffic data in the PA40 database are available for the flexible runways identified in table 
21. The traffic data for the date range June 2014 to October 2019 were obtained from threaded 
track data (TTD) reports provided by the MITRE Corporation.  Additional traffic data for years 
prior to 2014 were obtained directly from the airports (BWI and SFO). In PA40, runway usage 
data are searchable by date, aircraft type, arrival or departure, and runway end. 
 

Table 21. Available Traffic Data in Flexible Runways 

Airport Runway Available Years 
BOS 4L-22R June 2014 to Oct 2019 
CMH 10L-28R Jan 2014 to Oct 2019 
CMH 10R-28L Jan 2014 to Oct 2019 
GSO 5L-23R June 2014 to Sep 2019 
LGA 4-22 June 2014 to Oct 2019 
MCI 9-27 June 2014 to Sep 2019 
MIA 12-30 June 2014 to Oct 2019 
TUS 3-21 June 2014 to Oct 2019 
TUS 11L-29R June 2014 to Oct 2019 
BWI 10-28 Jan 2011 to Oct 2019 
SFO 10R-28L Jan 1999 to Oct 2019 

 
The objective of this section is to identify the most relevant traffic indices that influence pavement 
performance. Since the traffic data were collected from various sources, there is some 
inconsistency in data presentation. For example, some of the traffic data had information on the 
specific aircraft type for a given operation, whereas others broadly categorized the aircraft traffic 
based on type or operational use (general aviation versus military). In an effort to standardize the 
traffic data characteristics, the aircraft were classified into three broad categories based on the 
maximum takeoff weights (MTOW). Aircraft Category 1 (AC1) includes any aircraft with MTOW 
less than 100,000 lb. Aircraft Category 2 (AC2) includes aircraft with MTOW ranging from 
100,000 lb to 350,000 lb. Aircraft with MTOW over 350,000 lb were identified as Aircraft 
Category 3 (AC3). MTOW for individual aircraft were assigned according to the FAA Aircraft 
Characteristics Database (FAA, 2018a). 
 
Eight traffic indices were initially identified by considering the departure and arrival counts of 
each of the aircraft categories (AC) as summarized in table 22. Since heavier aircraft are likely to 
induce the most damage, a traffic count encompassing operations of aircraft with MTOW higher 
than 100,000 lb was also considered as a traffic index. 
  



 

73 

Table 22. Traffic Indices 

Traffic 
Index Description 

DepAC2 Departures of Aircraft Category 2  
DepAC3 Departures of Aircraft Category 3  
ArrAC2 Arrivals of Aircraft Category 2  
ArrAC3 Arrivals of Aircraft Category 3  
DepAC2&3 Summation of Departures of Aircraft Categories 2 and 3 
DepT Total Departures  
ArrT Total Arrivals 
TrafficT Total Traffic  

 
The annual values of the total traffic (TrafficT), departures of AC2 (DepAC2)and departures of 
AC3 (DepAC3) for some of the flexible runways are shown in figures 59 to 61. Most of the 
runways exhibited a relatively steady DepAC2 index. Runway 10-28 at BWI showed some 
fluctuation in DepAC2 traffic between 2011 and 2018, but an increasing trend can be observed 
after 2015. The DepAC3 index for SFO Runway 10R-28L declined from 2000 to 2006, then 
increased after 2012. The DepAC3 for the other runways showed small fluctuations. While a 
growth rate in fleet mix is sometimes assumed for the design, the variations of the annual traffic 
indexes do not indicate gradual growth in traffic for most of the runways. Given the limited data 
available for most of the runways (only 4 full years), it is not possible to reasonably determine a 
growth rate for the traffic indices.  
  

 
 

Figure 59. Variation of Total Traffic in Selected Runways Over the Course of Traffic  
Data Availability 
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Figure 60. Variation of DepAC2 Index in Selected Runways Over the Course of Traffic  
Data Availability 

 
 

Figure 61. Variation of DepAC3 Index in Selected Runways Over the Course of Traffic  
Data Availability 

For most of the runways in table 21, the majority of PCI survey data are for years prior to 2014, 
for which no traffic data are available. To evaluate the influence of traffic on pavement 
performance, available traffic data were back-projected to prior years, using the average annual 
traffic for the four years of available data. Since it is not possible to determine a growth rate for 
the traffic indices, the average values of each traffic index for years between 2015 and 2018 were 
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used to characterize the traffic indices for each runway. Where available (i.e., for SFO and BWI), 
the actual traffic indexes were used to evaluate the correlation to pavement performance. Figure 
62 gives the average values of total departures and arrivals, and figure 63 gives the average 
distribution of departures of each aircraft category on each runway. As shown in figure 62, Runway 
10-28 at BWI had the greatest number of departures followed by Runway 4L-22R at BOS and 4-
22 at LGA. Figure 63 shows that Runway 10-28 at BWI and Runway 10R-28L at SFO had the 
greatest numbers of AC2 and AC3 departures, respectively. 
 

 
 

Figure 62. Average Annual Total Departures and Arrivals on Each Runway 

 

 
 

Figure 63. Average Annual Departure Based on Aircraft Weight on Each Runway 
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4.6.1  Pairwise Correlation Between Traffic Indices 

Figure 64 shows the Pearson correlation matrix, which illustrates the strength of pairwise linear 
relationships between traffic indices. Pairwise correlations exceeding a threshold of 0.7 can be 
considered high collinearity. Based on this threshold value, DepT is highly correlated to DepAC2 
and poorly correlated to DepAC3. Also, there is a low correlation between DepAC2 and DepAC3. 
The correlations in figure 64 are valid only for the evaluated traffic data in the current database 
and cannot be extended to other runways. 
 

 
 

Figure 64. Pearson Correlation Between Traffic Indices 

4.6.2  Correlation Between Traffic and Pavement Performance 

This section examines the correlations between the runway traffic index and two pavement 
performance indices, PCI and SCI, both of which include load-related distresses. Since the traffic 
data concurrent with the performance are not available for most of the flexible runways, the annual 
average of each traffic index over the years for which traffic data are available (as identified in 
table 21) was used to calculate a representative traffic index at each runway. For each flexible 
pavement section in the runway keel areas, the accumulated traffic index was calculated from the 
last major rehabilitation/construction, and regressed against the performance index. The 
accumulated traffic index for each pavement section was calculated by multiplying the pavement 
age by the annual average traffic index value. For example, Section 9105C of RWY 4L-22R at 
BOS, PCI was inspected in 2012, approximately 8 years after a rehabilitation. For this runway, the 
average annual DepAC2 and DepAC3 are 39,790 and 2,160, respectively. Therefore, calculate the 
accumulated traffic index DepAC2&3 as 8 × (39,790 + 2,160) = 335,600. Regression analysis was 
used because only a single independent variable (traffic) was involved. PCI was plotted against 
the accumulated DepAC2&3 index, as shown in figure 65. While the PCI deterioration exhibits a 
downward trend, the R2 resulting from fitting a logarithmic curve is close to zero. The variations 
of PCI with respect to accumulated DepAC2 and DepAC3 are also very low, as shown in figures 66 
and 67. These results indicate that the evaluated traffic indices alone cannot explain most of the 
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PCI variations. The variation of PCI with pavement age is shown in figure 68 for comparison. 
Given that the R2 from PCI-vs-Age graph (R2 = 0.67) is much higher than that from the PCI-vs-
Accumulated Traffic graphs, it may be concluded that pavement age is a much stronger predictor 
than the accumulated traffic alone. This suggests that it is not realistic to replace pavement age 
with just accumulated traffic when predicting PCI.  

  

 
 

Figure 65. Variations of PCI With Accumulated DepAC2&3 

  
 

Figure 66. Variations of PCI With Accumulated DepAC2 
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Figure 67. Variations of PCI With Accumulated DepAC3 

 
 

Figure 68. Variations of PCI With Pavement Age 

The variation of SCI with accumulated DepAC2 and DepAC3 is shown in figures 69 and 70. The 
R2 values resulting from fitting logarithmic curves are close to zero. Some pavement sections 
experienced low traffic but still exhibited poor SCI (e.g., TUS Runway 3-21). There are also some 
pavement sections with SCI near 100 with high accumulated traffic (e.g., SFO Runway 10R-28L). 
These observations indicate that poor SCI cannot be solely attributed to the high traffic level. One 
explanation for poor SCI in a low trafficked runway is that the SCI was compared to the cumulative 
traffic since the last major rehabilitation. This eliminates the contribution of the accumulated 
traffic since initial construction, but before rehabilitation, to the consumed fatigue life of the 
asphalt layer. While the rehabilitation activities bring the functional conditions back to a 
serviceable standard, they may not address structural deficiencies. In this case, for an old asphalt 
pavement that received multiple overlays spanning its lifetime, it is possible that the fatigue 
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damage that has been accumulated over the years at the bottom of the asphalt layer eventually 
manifests itself at the surface. One explanation for highly trafficked runways exhibiting negligible 
fatigue cracking (SCI close to 100) is the difference between the design traffic and actual traffic. 
 

  
 

Figure 69. Variations of SCI With Accumulated DepAC2 

 
 

Figure 70. Variations of SCI With Accumulated DepAC3 

4.6.3  Implementation of Feature Ranking on Traffic Indices 

Two sets of feature ranking analysis were performed by considering PCI and SCI as the targets 
and eight traffic indices as predictors. Traffic indices were treated as cumulative values from date 
of construction/rehabilitation to the date of inspection. Pavement age at the time of PCI/SCI 
measurements was also considered as a predictor. Two filter methods, Pearson Correlation and 
ReliefF, and two wrapper methods (considering linear regression and SVM as the learner) were 
used for feature ranking analysis. Table 23 summarizes the rank of each feature with respect to 
PCI, and the associated weights or scores as calculated by each ranking algorithm. Note that, 
except for the Pearson correlation (defined on [-1, 1]), the absolute scores for different methods 
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are not bounded, nor are they on the same scale (i.e., the scores given by RRelief are not directly 
comparable to the scores given by SVM). All ranking methods identified pavement age as the most 
relevant predictor. Pavement age scores much higher than any of the traffic indices. Overall, DepT 
received high ranks and ArrT received low ranks among the traffic indices. However, the ranking 
methods were not in agreement in identifying a traffic index as the most informative predictor. 
Table 24 summarizes the rank of each feature with respect to SCI. All the ranking methods gave 
the highest rank to pavement age. DepT received a higher rank than other traffic indices. The 
Pearson correlation (R) indicates very low correlations between SCI and traffic indices, and for 
some indices the increase in traffic led to an increase in SCI, contradicting engineering 
expectations. The linear regression wrapper method gave nearly zero score to most of the traffic 
indices. Also, the SVM wrapper method gave roughly the same score to all traffic indices. These 
results suggest that the ranking algorithms were not able to identify any of the traffic indices as a 
relevant predictor of SCI. 

Table 23. Results of Feature Ranking Analysis on Traffic Indices With PCI as Target 

Filter Methods Wrapper Methods 
Pearson 

Correlation RReliefF 
SVM 

Gaussian Kernel Liner Regression 
Input 

Variable R 
Input 

Variable Score 
Input 

Variable Score 
Input 

Variable Score 
Age -0.79 Age 0.024 Age 14.6 Age 7.52 
DepT -0.43 DepAC3 0.012 DepT 7.6 DepT 1.94 
DepAC2 -0.32 ArrAC3 0.012 ArrAC2 7.0 DepAC2 1.04 
DepAC2&3 -0.32 DepAC2&3 0.010 TrafficT 6.9 DepAC2&3 1.03 
TrafficT -0.28 TrafficT 0.010 DepAC3 6.8 TrafficT 0.71 
DepAC3 -0.17 DepT 0.008 DepAC2 6.8 DepAC3 0.27 
ArrAC2 0.10 DepAC2 0.007 DepAC2&3 6.6 ArrAC2 0.00 
ArrAC3 -0.05 ArrAC2 0.007 ArrT 6.6 ArrAC3 0.00 
ArrT -0.02 ArrT 0.006 ArrAC3 6.5 ArrT 0.00 

 
Table 24. Results of Feature Ranking Analysis on Traffic Indices With SCI as Target 

Filter Methods Wrapper Methods 
Pearson 

Correlation RReliefF 
SVM 

Gaussian Kernel Liner Regression 
Input 

Variable R 
Input 

Variable Score 
Input 

Variable Score 
Input 

Variable Score 
Age -0.47 Age 0.040 Age 14.4 Age 1.39 
DepT -0.19 TrafficT 0.013 DepT 13.7 DepT 0.20 
DepAC2 -0.13 DepT 0.012 DepAC2 13.6 ArrAC2 0.08 
ArrAC2 0.13 DepAC2 0.007 DepAC2&3 13.6 DepAC2 0.08 
DepAC2&3 -0.12 ArrT 0.006 ArrAC3 13.4 DepAC2&3 0.04 
ArrAC3 0.09 DepAC2&3 0.003 TrafficT 13.4 ArrT 0.00 
TrafficT -0.08 ArrAC2 0.001 DepAC3 13.4 DepAC3 0.00 
ArrT 0.06 DepAC3 -0.015 ArrAC2 13.4 ArrAC3 0.00 
DepAC3 0.03 ArrAC3 -0.016 ArrT 13.4 TrafficT -0.04 
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4.6.4  Clustering of Traffic Data Using k-means 

Runways listed in table 21 were grouped based on the similarities between two of their traffic 
indices by implementing k-means cluster analysis. Table 25 illustrates the combinations of the 
traffic indices used for clustering. The optimum number of clusters was three. The results of 
clustering are shown in figures 71 through 73. The outcome of cluster analysis can be used to 
group the performance data records from runways with similar traffic levels into the same clusters. 

Table 25. Possible Combinations of Traffic Index for Clustering 

Traffic Index 1 Traffic Index 2 
DepT DepAC3 
DepAC2&3 DepAC3 
DepAC2 DepAC3 

 

 
 

Figure 71. Cluster Assignments of the Runways’ Traffic Level Based on DepT and DepAC3 
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Figure 72. Cluster Assignments of the Runways’ Traffic Level Based on DepAC2&3  
and DepAC3 

 
 

Figure 73. Cluster Assignments of the Runways’ Traffic Level Based on DepAC2 and DepAC3 
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4.6.5  Conclusion of Traffic Analysis 

Results of regression analyses indicated that PCI and SCI have poor correlations with accumulated 
traffic, i.e., traffic alone cannot explain all the variations in pavement performance. Runways with 
higher numbers of heavier aircraft (AC2 and AC3) did not show a higher rate of pavement 
deterioration. However, runways with lower traffic levels did exhibit load-related distresses, such 
as alligator cracking. This suggests that traffic alone is not adequate to explain the development of 
structural distresses in pavements. The presence of structural distresses can also be due to other 
factors such as inadequate pavement thickness and quality of construction materials. Feature 
ranking analysis identified pavement age as a more powerful predictor of PCI and SCI than any 
traffic index. This analysis did not identify any of the evaluated traffic indices as a highly relevant 
predictor. Total departure (DepT) received a higher rank, and total arrival (ArrT) received the 
lowest rank among the evaluated traffic indices. Nevertheless, low correlation between the traffic 
indices and PCI/SCI do not imply that traffic is not a contributor to pavement performance. 
Pavement design principles, along with findings from the feature selection analysis and pairwise 
correlation, can be used to identify sets of traffic indices to be used as the input variables for 
developing pavement performance predictive models. Three options are recommended for 
incorporating traffic as an input variable for predicting PCI and SCI: 
  
• Consider using the DepAC2 and DepAC3 traffic indices. This approach is consistent with 

the airport pavement thickness design procedure in which only the departures of heavy 
aircraft are considered. Moreover, these traffic indices exhibited low correlation with one 
another, making them good candidates to discriminate between the runways’ traffic levels.  

• Use cluster analysis by assigning a cluster number to each performance data record. Assign 
the cluster numbers as a categorical input variable to differentiate the traffic level between 
the performance data records.  

• Perform PCA by considering a set of traffic indexes (e.g., DepAC2 and DepAC3) in 
conjunction with other predictors, such as weather variables, layer thickness, and 
maintenance activities. 

5.  DEVELOPMENT OF PREDICTIVE MODELS FOR PAVEMENT PERFORMANCE 

Sections 2 and 3 of this report showed that static and autoregressive approaches can be used for 
developing performance prediction models. Implementing both approaches for a simple case, 
where pavement age was the only predictor, indicated that ML models based on autoregressive 
approaches were more promising for predicting pavement performance. Section 4 identified the 
most informative features for predicting pavement performance. Collinearity analysis identified 
high correlations between some of the climate/weather variables. Feature selection analysis 
identified a subset of climate/weather variables that have relatively high correlations to the target 
(anti-SCI). In addition, cluster analysis indicated that performance data can be grouped into three 
or four clusters based on two or three climate characteristics. The dimension of the feature space 
can be reduced by replacing the weather variables with a cluster number assigned to each data 
record. PCA determined that the feature space (input domain) can be reduced to three principal 
components. In the following sections, findings from the previous sections are used to develop 
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predictive models for anti-SCI using three approaches: subset of features, PCA, and k-means 
clustering. The Weka suite (Eibe et al., 2016) was used for modeling all three approaches. 

5.1  DEVELOPING PREDICTION MODELS FOR ANTI-SCI USING A SUBSET OF 
INFORMATIVE FEATURES 

In this approach, those climate/weather variables that showed high collinearity were removed from 
the input space, and six remaining climate/weather variables were considered for model 
development. An autoregressive approach was used, whereby the previous anti-SCI was 
considered as a predictor. RF was employed as the base learner for developing the anti-SCI 
prediction model. Table 26 summarizes the input and output variables to the RF model. A complete 
dataset including the input and output variables was created using the pavement performance data 
from flexible runways. A total of 278 data records from 10 runways were used for training the RF 
model. One section from each runway was set aside for independent testing (38 data points). A 
bagged ensemble of regression trees was employed in the RF model for target prediction. The out-
of-bag technique was used for cross-validation to tune the regression tree hyperparameters and 
improve the predictive performance. The RF hyperparameters were optimized using random 
search. Figures 74 and 75 show the comparison of RF-predicted and measured anti-SCI, for both 
training and testing subsets. Table 26 summarizes the prediction errors for both training and testing 
subsets. The accuracy of the RF model was acceptable in both training and testing subsets as 
determined by relatively low error. The model generalized well as determined by comparable 
errors between the training and testing subsets. Table 26 shows that the model accuracy at 10% 
error is 95% on the testing subset, i.e., the prediction error was less than 10% for 95% of the data. 
The accuracy measures presented in table 27 describe the average performance of the prediction 
model, but do not address validity across the input domain. The error analysis shows that the 
prediction errors are highest for the anti-SCI values below 50. One reason for this higher error is 
that limited data exist for pavements with anti-SCI less than 50, which makes the prediction in that 
region less reliable. One explanation for this data scarcity is that airport owners tend to prevent the 
pavement condition index from falling below 60 by replacing or rehabilitating the pavement. 
 

Table 26. Input and Output Variables to RF Model—Subset of Feature Approach 

Variable Type Variables Descriptions 

Input Variables 

Age (t) Time since last major rehabilitation 
Anti-SCI (t-1) Previous anti-SCI measurement 
Delta-Time Time since previous anti-SCI 

measurement 
Asphalt Thickness Thickness of asphalt at the time of 

anti-SCI 
FThC 

Average climate variables between 
two anti-SCI measurements 

FDD 
Temp 90 
TempDiff 
TPrec 
Thornthwaite Index 

Target Anti-SCI (t) Measured anti-SCI 
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Table 27. Performance of the RF Model—Subset of Features Approach 

 Training Subset Testing Subset 
R2 0.89 0.90 

RMSE 5.16 4.55 
RRSE 9.5% 9.0% 

Accuracy (5% Error) 69% 68% 
Accuracy (10% Error) 90% 95% 

 

  
 

Figure 74. Comparison of Predicted and Actual Anti-SCI for Training Subset  
(subset of feature approach) 
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Figure 75. Comparison of Predicted and Actual Anti-SCI for Testing Subset 
 (subset of feature approach) 

5.2  DEVELOPING PREDICTION MODELS FOR ANTI-SCI USING PRINCIPAL 
COMPONENT ANALYSIS 

Similar to the previous approach, an autoregressive model was used to predict anti-SCI. The input 
domain consisted of: pavement age, previous anti-SCI, time since previous anti-SCI, and 11 
climate/weather variables (calculated as average values since the previous anti-SCI measurement), 
as identified in table 20. The input data were transformed into principal components. Three 
principal components that explain 95% of the variance of the input domain were considered as 
input variables for predicting anti-SCI, as shown in table 28. RF was employed as the base learner 
for developing the anti-SCI prediction model. A total of 278 data records from 10 runways were 
used for training the RF model, and one section from each runway was set aside for independent 
testing (38 data points). Table 29 summarizes the prediction errors for both the training and testing 
subsets. The model generalizes well as determined by comparable errors between the training and 
testing subsets. The estimation error using PCA is similar to the first approach, in which a subset 
of weather variables was considered. Figures 76 and 77 show the comparison of RF-predicted and 
measured anti-SCI, for both the training and testing subsets. 
 

Table 28. Input and Output Variables to RF Model—PCA Approach 

Variable Type Variables 

Input Variables 
PC1 
PC2 
PC3 

Target Anti-SCI (t) 
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Table 29. Performance of the RF Model—PCA Approach 

 Training Subset Testing Subset 
R2 0.89 0.90 

RMSE 5.11 4.81 
RRSE 9.0% 7.3% 

Accuracy (5% Error) 74% 67% 
Accuracy (10% Error) 88% 90% 

 

  
 

Figure 76. Comparison of Predicted and Actual Anti-SCI for Training Subset in the  
PCA Approach 
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Figure 77. Comparison of Predicted and Actual Anti-SCI for Testing Subset in the  
PCA Approach 

5.3  DEVELOPING PREDICTION MODEL FOR ANTI-SCI USING FEATURES FROM 
CLUSTER ANALYSIS 

In this section, data records with similar climate characteristics were grouped into clusters using 
the result of k-means cluster analysis as presented in section 4.5. For each data record, the time 
since the last performance measurement was considered as a sliding window, and the average of 
each weather variable was calculated over that window. The data records were then grouped into 
clusters based on similarities of two or three of their average climate variables. After examining 
different combinations of climate variables for cluster analysis, it was determined that clustering 
based on three climate variables, namely: (1) FDD, (2) Temp90, and (3) TPrec, yielded the best 
model performance. The performance data records were then grouped into four clusters (numbered 
1 through 4) based on their climate characteristics. Table 30 lists the average weather/climate 
variables at the centroid of each cluster. The numbers of data records assigned to each cluster are 
also shown in table 30. 

 
Table 30. Average Climate Variables at the Centroid of Each Cluster 

 Climate Variables Cluster 1 Cluster 2 Cluster 3 Cluster 4 
FDD 108 330 549 2 
Temp90 21 12 22 149 
TPrec 35 40 30 9 

Instances 117 
(36%) 

126 
(39%) 

31 
 (10%) 

51 
 (16%) 
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Similar to the previous approaches, an autoregressive model was used for anti-SCI prediction and 
RF was used as the base learner. Table 31 illustrates the input and output variables in the RF model 
used in the cluster approach. 

Table 31. Input and Output Variables in the RF Model—Cluster Approach 

Variable Type Variables Descriptions 

Input Variables 

Age (t) Time since last major rehabilitation 
Anti-SCI (t-1) Previous anti-SCI measurement 
Delta-time Time since previous anti-SCI measurement 
Asphalt thickness Thickness of asphalt at the time of anti-SCI 
Climate Group Cluster 1, 2, 3, or 4 

Target Anti-SCI (t) Measured anti-SCI 

The same training and testing subsets as in the PCA and the subset of variable approaches were 
used again in the cluster approach. Table 32 summarizes the prediction errors for both the training 
and testing subsets. The model generalized well, as shown by comparable errors between the 
training and testing subsets. Figures 78 and 79 show comparisons of the RF-predicted and 
measured anti-SCI, for both the training and testing subsets. 

Table 32. Performance of the RF Model—Cluster Approach 

 Training Subset Testing Subset 
R2 0.88 0.93 

RMSE 5.41 3.86 
RRSE 10.2% 6.3% 

Accuracy (5% Error) 69% 68% 
Accuracy (10% Error) 90% 92% 
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Figure 78. Comparison of Predicted and Actual Anti-SCI for Training Subset for the  
Cluster Approach 

  
 

Figure 79. Comparison of Predicted and Actual Anti-SCI for Testing Subset for the  
Cluster Approach 
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Figure 80 compares the anti-SCI deterioration curves for each data cluster. Cluster 1 has the 
slowest deterioration rate. Cluster 1 represents generally mild climate conditions (e.g., lower 
average number of FDD compared to clusters 2 and 3, lower average number of days with a high 
temperature above 90ºF compared to cluster 4). Likewise, data in cluster 4 have the highest number 
of days with a high temperature above 90ºF and exhibit the fastest deterioration rate. However, 
one should be circumspect about drawing a general conclusion based on these observations, since 
factors other than climate conditions could have contributed to the deterioration. 
 

 
 

Figure 80. Anti-SCI Deterioration Rate at Different Climate Clusters 

5.4  CONCLUSION OF ANTI-SCI PREDICTIVE MODELING 

Three modeling approaches were implemented in this section for predicting anti-SCI. All 
approaches were based on a similar autoregressive RF algorithm, but they used different strategies 
for incorporating weather variables. In the first approach, a subset of informative climate variables 
with low collinearity were considered. In the second approach, 11 climate variables along with 
other inputs were transformed into PC. In the third approach, the performance data records were 
grouped into four clusters based on their climatic characteristics. Results indicated that all three 
models are capable of predicting anti-SCI with relatively high accuracy. The third approach 
showed lower errors on testing subsets compared to other approaches. The prediction errors were 
higher for anti-SCI values less than 50. The developed ML models showed promising 
generalization capability, as the model performance on testing subsets outperformed the 
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performance on training subsets. Comparisons between the models developed in this section and 
the autoregressive model in section 3.3.7 indicate that taking into account the weather variables 
improved the prediction performance. However, the improvement in performance was not 
significant. This suggests that pavement age and previous anti-SCI are the most significant 
predictors for anti-SCI. 
 
6.  RESEARCH FINDINGS AND RECOMMENDATIONS 
 
6.1  SUMMARY AND FINDINGS 
 
This study applies ML techniques for prediction of pavement performance to data from the FAA’s 
PA40 database. A majority of previous efforts focused on the development of predictive models 
for pavement performance indicators such as IRI and PCI, or predictive models for particular 
distress types such as cracks, rutting, and faulting, by using data from the LTPP and the state 
highway performance data. Based on the literature, ANN, SVM, and RF were potentially feasible 
ML techniques for modeling pavement performance. Section 1 of this report provides a concise 
introduction to these ML methods. 
 
To validate the application of each ML method in predicting pavement performance, simplified 
prediction models were developed for two pavement performance indicators (anti-SCI and PCI) 
by considering the pavement age as the primary predictor. The researchers implemented two 
modeling approaches (static and autoregressive) for each ML method. In the static approach, the 
pavement functional age was the only predictor. In the autoregressive approach, the previous 
condition measurement, and the time lapse between the two measurements, were considered as 
additional predictors. Variant architectures and schemes from each ML model were tested and 
compared to identify the best model for performance indicator prediction. Model performance was 
evaluated based on accuracy (minimizing the prediction error), generalization (similar 
performance on new data) and conformance to engineering principles. The anti-SCI and PCI 
prediction curves obtained from the ML models were compared to prediction curves from fourth-
degree polynomial regression models. The following are key findings from the study: 
 
• The R2 values of the ML models were all above 0.7 and were comparable with the 

regression model, indicating their suitability for predicting pavement performance. 
However, the accuracy of the static models was not high, suggesting that pavement age 
alone cannot explain all the variation in PCI and anti-SCI. 

• All models exhibited comparable performance on the independent testing subsets, meaning 
that they yielded good generalization performance. 

• While the static RF model produced a lower prediction error compared to the static ANN 
and SVM, the predicted deterioration curve did not exhibit a monotonically descending 
trend. This suggests that quantitative evaluation (e.g., accuracy and generalization) alone 
is not adequate to determine the overall performance of the model and qualitative 
evaluation (e.g., conforming to engineering principles) must also be considered. 

• Autoregressive models generally had smaller errors and higher R2 than Static models and 
yielded similar generalization performance, making them a more suitable modeling 
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approach for the PA40 data. Autoregressive models enable predicting future performance 
in desired increments when performance is provided at a given age. Overall, the 
autoregressive RF model exhibited the best prediction performance. 

To expand the performance models beyond pavement age, the climate/weather and traffic 
attributes were considered as predictors. A series of weather variables were identified and then 
various supervised and unsupervised learning techniques were applied to determine the key 
climate parameters that impact pavement performance. The problem with having large numbers 
of insignificant predictors is that prediction variance increases and makes it difficult to identify the 
influence of a given feature. Various collinearity tests were performed to explore the pairwise 
correlation between the climate variables. Feature selection methods were applied in an attempt to 
reduce the dimensionality of feature (input) space by identifying and removing a subset of 
irrelevant and redundant variables that can decrease the model’s accuracy and quality. Two general 
FS strategies were considered: feature ranking and subset selection. In these evaluations, for each 
pavement section, two approaches were used: in the first approach, the average values of stored 
climate variables over the time period between two inspections were computed and compared to 
the rate of anti-SCI deterioration; the second approach compared anti-SCI to the cumulative values 
of stored climate variables from the time of rehabilitation to the time of inspection. Also, feature 
construction methods were implemented to reduce the dimensionality of the feature space by 
constructing new features from the original feature set. The FC methods included two 
unsupervised learning methods: cluster analysis (based on the k-means algorithm) and PCA. The 
key findings of the environmental data analysis are as follows: 
 
• There are low- and moderate-strength pairwise correlations among most of the climate 

variables, but only a few of the correlations can be considered high. The pairwise 
correlation between the climate variables can change from region to region. 

• Pavement age, previous anti-SCI, and cumulative Temp90 received higher rank, and 
cumulative FDD and FThC received the lowest rank among the variables in all ranking 
algorithms. Since the cumulative weather variables are dependent on pavement age, the 
high correlation with anti-SCI does not imply a direct cause of performance deterioration. 

• The correlation coefficient between each cumulative weather variable and anti-SCI was 
less than the correlation between age alone and anti-SCI. This suggests that none of the 
weather variables alone is a better predictor than age for predicting anti-SCI. 

• The rate of anti-SCI reduction is not significantly correlated to any of the weather variables, 
meaning that no individual weather variable can describe the changes in anti-SCI 
deterioration. 

• The evaluation of the impact of climate on pavement performance would have been more 
meaningful if individual distress types were considered as opposed to an overall surface 
condition indicator such as anti-SCI. 

• Low correlation between a weather variable and performance does not imply that the 
variable has no value. It is likely that when all the weather variables are taken together, 
they can describe some variation in anti-SCI. 
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• Cluster analysis indicated that the performance dataset can be grouped into three to four 
clusters with homogenous climatic characteristics based on two or three weather variables. 
The high-dimensional climate feature space can be reduced to only one feature that 
includes the cluster assignments for each performance record. 

• The PCA indicated that three principal components can explain 95% of the total variance 
of input variables. 

Eight traffic indices were identified to examine the influence of traffic on two pavement 
performance indicators: PCI and SCI. Pairwise correlation analysis and feature ranking analysis 
were performed to identify the most relevant traffic indices for predicting PCI and SCI. A series 
of k-means cluster analysis were also performed to group the runways with similar traffic 
conditions into the same clusters. The key findings of the traffic data analysis are as follows: 
 
• PCI and SCI have poor correlations with accumulated traffic indices. Differences between 

design traffic and actual traffic may account for this poor correlation. Traffic alone cannot 
explain all the variations in pavement performance. Runways with higher numbers of 
heavier aircraft did not show a higher rate of pavement deterioration. Conversely, runways 
with lower traffic levels exhibited load-related distresses such as alligator cracks. 

• The low correlations could be due to inherent limitations in traffic data or calculation of 
cumulative traffic. 

• Age is a much stronger predictor than any of the evaluated traffic indices. 

• The low correlations between traffic indices and PCI/SCI do not imply that there is no 
value in incorporating traffic for performance prediction. Pavement design principles can 
be used to select appropriate traffic index. 

• Three options were recommended for incorporating traffic as input for developing PCI and 
SCI predictive models: 1) use two traffic indices, namely DepAC2 and DepAC3; 2) assign 
cluster number to the data records; and 3) perform PCA by incorporating sets of traffic 
index, and other variables such as age, climate, and pavement structure. 

Findings from the environmental data analysis were used to develop predictive models for anti-
SCI using an autoregressive approach and RF as the base learner. Three different approaches for 
considering the input variables were implemented. In the first approach, a subset of informative 
weather variables with low collinearity were considered. In the second approach, 11 weather 
variables along with other inputs were transformed into principal components, and in the third 
approach, the performance data records were grouped into four clusters based on their climatic 
characteristics. The key findings are as follows: 
 
• All the models were capable of predicting anti-SCI with relatively high accuracy. The third 

approach showed lower errors on testing subsets as compared to other approaches. 

• Despite the acceptable average performance of the models, the models were not robust 
across the input domain. The models yielded larger inaccuracies for anti-SCI values less 
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than 50. One reason for this higher error is the scarcity of performance data for airport 
pavements with anti-SCI of less than 50. 

• While taking into account that the weather variables improved the prediction performance, 
the improvement in performance was not significant. Pavement age and previous anti-SCI 
were still the most significant predictors for anti-SCI. 

6.2  RECOMMENDATIONS FOR FUTURE RESEARCH 

Based on investigations performed under this report, the following additional research is 
recommended:  
 
1. Expand the traffic data analysis by distributing the traffic to the runway section. The 

pairwise correlation analysis, feature ranking analysis, cluster analysis, and PCA can be 
reiterated. 

2. Use a similar ML process to develop predictive models for PCI suitable for immediate use 
by industry. The impact of traffic can be incorporated according to the recommended 
methods in this report. 

3. Complete the preliminary analysis by investigating climatic influence on individual 
pavement distress types, such as block cracking, longitudinal/transfers cracking, and 
alligator cracking, using ML methods. 

4. Expand the developed anti-SCI prediction models by considering additional features, such 
as traffic, maintenance activity, pavement material properties, subgrade type and drainage 
conditions, in an attempt to improve the prediction accuracy. 

5. Develop ML prediction models for the components of SL index: FOD, roughness indices, 
and friction indices. This family of models will output an estimated value for each 
performance index. 

6. Develop an ML solution to combine individual performance indexes and enhance the SL 
index. The developed SL model will allow practitioners to determine whether the runway 
pavement is serviceable given certain performance indices. The model also enables the 
projection of runway SLs that can be used to strategize for maintenance. 
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APPENDIX A—DEVELOPMENT OF HISTORICAL CLIMATE AND WEATHER DATA 
LINKS BETWEEN PA40 AND EXISTING FEDERAL AVIATION ADMINISTRATION 

DATABASES 

A.1  INTRODUCTION 
 
This appendix presents the content of an unpublished technical note authored by Russell Gorman, 
Scott Murrell, and Timothy Parsons of Applied Research Associates, Inc. The technical note 
describes the research effort that determined how weather events were summarized and 
implemented in the software tool, PA40. 
 
A.1.1  BACKGROUND 
 
The Federal Aviation Administration (FAA) Office of Airport Safety and Standards (AAS) has 
requested that methodologies be developed to extend the expected life of large hub runway 
construction from the current standard of 20 to 40 years. The development of life extension 
methodologies is being executed using a three-pronged approach consisting of: (a) comprehensive 
data collection for a selection of runways at large- and medium-hub U.S. airports, including 
construction, performance, material property, traffic and environmental data; (b) the development 
of advanced performance models based on the collected data relating various performance 
measures to traffic, structural, and environmental inputs; and (c) the development of a new 
definition of airport pavement life that is consistent with the assumptions of life cycle cost analysis 
(LCCA), e.g., that the end of pavement life occurs when the annual cost of maintaining continued 
service at a safe operational level exceeds the annualized cost of replacement. 
 
Data collection in support of extended airport pavement life began in 2012. To date, data have 
been collected on 28 runways at 22 U.S. airports. Field visits were made to a subset of these 
airports and additional field data collected on 13 of these runways. To facilitate analysis of the 
collected data for the development of advanced performance models the FAA has developed a 
project specific software tool—PA40. 
 
PA40 is a standalone implementation of the FAA PAVEAIR pavement management system. The 
PA40 data warehouse contains tables and functions not currently implemented in the public 
version of FAA PAVEAIR. PA40 is not accessible through the FAA PAVEAIR website. To 
facilitate the future study of the influence of climate/weather on the long-term performance of 
airfield pavements, the FAA directed that new remote database access and calculation functionality 
be added to PA40.  
 
A.1.2  SCOPE 
 
This document details the weather and climate data search functions in PA40, including the 
justifications for and planned use of the particular data elements selected and the source data for 
each element. 
 
The FAA databases contain National Oceanic and Atmospheric Administration (NOAA) 
maintained Automated Weather Observing System (AWOS) and Automated Surface Observing 
Systems (ASOS) information. The scope of this research includes working with to these data sets 
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from within PA40. Specific required weather data include: temperature, wind speed, precipitation, 
relative humidity (or dew point), solar radiation or sky cover. PA40 was also modified to compute 
derived weather fields from the basic data. The weather data were considered network-level 
(airport-level) data in PA40, and made available as hourly readings for each airport in the database. 
Climate is distinct from weather and refers to long-term environmental trends expressed by 
statistics, such as average annual precipitation or average annual high/low temperatures. The scope 
also includes creating new functions as needed within the PA40 graphical user interface to query, 
return, and display the weather and climate data for all airports in the study. 
 
A.2  APPROACH 
 
First, climate/weather data elements to link to PA40 were assessed to determine which derived 
climate/weather fields should be computed and displayed. Then, the available climate/weather 
information in the FAA databases was determined to communicate what was needed and the 
format and to assist the FAA in the development of the web service. The FAA climate/weather 
databases contain NOAA reported data measured by AWOS and ASOS at the Extended Airport 
Pavement Life Study (EAPL) airports. The solar radiation data originates from the National Solar 
Radiation Database maintained by the National Renewable Energy Laboratory (NREL) of the 
Department of Energy (DOE). While the web service was being implemented by others, the web 
page was developed and server-side processing calculations were coded. The relationship of the 
three main components of the Climate/Weather Link are shown in figure A-1. 
 

 
 

Figure A-1. Climate Weather Link Components and Their Relationships 
 

The user can select a particular site and date/time range on the web page user interface. Then, the 
data for that date/time range and site are retrieved from the web service. Those data are then 
received by the server-side processing component and the report calculations are processed. After 
all processing is complete, the results are fed back to the web page and displayed to the user in 
tabular format. 
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The following sections describe the calculations performed by the server-side software component 
on the raw data that result in the report that is presented to the user. 
 
A.2.1  HIGH TEMPERATURE (DEGREES FAHRENHEIT) 
 
Each hourly average temperature received by the web service is reviewed.  The highest hourly 
average temperature in the data is retrieved. 
 
A.2.2  LOW TEMPERATURE (DEGREES FAHRENHEIT) 
 
Each hourly average temperature received by the web service is reviewed.  The lowest hourly 
average temperature in the data is retrieved. 
 
A.2.3  AVERAGE TEMPERATURE (DEGREES FAHRENHEIT) 
 
Each hourly average temperature received by the web service is stored.  The totaled result is used 
to calculate the average hourly average temperature in the entire data set (i.e., every hourly average 
temperature contained in the user selected date/time range). 
 
A.2.4  AVERAGE DAILY TEMPERATURE RANGE (DEGREES FAHRENHEIT) 
 
The temperature range is calculated daily by calculating the difference between the high and low 
values found each day. The average of all daily temperature ranges is then calculated and reported 
to the user in degrees Fahrenheit. 
 
A.2.5  NUMBER OF FREEZE THAW CYCLES (NUMBER OF CYCLES) 
 
Each hourly average temperature received by the web service is reviewed. The number of times 
the temperature goes from a value of less than 32 degrees Fahrenheit to a value greater than 32 
degrees Fahrenheit is recorded. 
 
A.2.6  FREEZE DEGREE DAYS (DEGREES FAHRENHEIT) 
 
Each hourly average temperature received by the web service is reviewed and the average daily 
temperature is calculated for each day that falls within the date/time range selected by the user.  
Any day where the average daily temperature is less than 32 degrees Fahrenheit is considered a 
freeze degree day. 
 
For each freeze degree day that is found, an overall running total of the number of degrees the 
daily average temperature of each freeze degree day falls below 32 degrees Fahrenheit is 
maintained.  The value of the running total of these temperature deltas is the freeze degree days 
value that is presented to the user. 
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A.2.7  DAYS TEMPERATURE OVER 90 DEGREES FAHRENHEIT (DAYS) 
 
For the contiguous United States, temperatures above 90⁰F are typically considered hot, and 
NOAA and other agencies keep track of the occurrences across the U.S. The New York City Panel 
on Climate Change defined an extreme temperature event as a day when the temperature reached 
90⁰F or hotter.1 Higher than normal temperatures are known to have a negative impact on 
pavement performance, which warrants further study under the EAPL. Although 90⁰F does not 
have the same inherent physical significance as 32⁰F (the freezing point of water), it nevertheless 
serves as a convenient high-temperature threshold. 
 
This calculation is similar to the Freeze-Degree-Day calculation, except degree-days above 90 
degrees Fahrenheit are summed instead of degree-days below freezing. Each hourly average 
temperature received by the web service is reviewed. The number of days in which the temperature 
exceeded 90 degrees Fahrenheit is recorded. 
 
A.2.8  DAYS PRECIPITATION (DAYS) 
 
Each hourly average precipitation amount received by the web service is reviewed. The number 
of days in which the total daily precipitation exceeded 0 inches is recorded. 
 
A.2.9  DURATION PRECIPITATION (HOURS) 
 
Each hourly average precipitation amount received by the web service is reviewed. Using this data, 
each precipitation event will be calculated (in hours) and recorded. A precipitation event starts 
when precipitation is first detected (i.e., precipitation value is greater than 0 inches) in a given hour 
of data. The precipitation event continues as long as precipitation is also detected in the next 
contiguous hour or hours. The precipitation event stops upon the first contiguous hour in which 
there is no precipitation recorded (i.e., precipitation value equals 0 inches). A single precipitation 
event may span across one or more days as long as the consecutive hours all have experienced 
precipitation.   
 
The number of precipitation events is recorded, and the average precipitation event duration in 
hours is calculated. 
 
A.2.10  PRECIPITATION TOTAL (INCHES) 
 
Each hourly average precipitation amount received by the web service is summed. The total 
number of inches of precipitation is recorded. 
 
A.2.11  FREEZE PRECIPITATION DAYS (DAYS) 
 
Each hourly average precipitation amount and each hourly average temperature received by the 
web service is reviewed. If at least one average hourly temperature in a particular day is below 
32 degrees Fahrenheit and at least one average hourly precipitation value in the same day is greater 

 
 

1 Climate Risk Information 2013, Observations, Climate Change Projections and, Maps; New York City Panel on Climate Change, June 2013. 
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than 0 inches, then this is considered a freeze-precipitation day.  Note that the “freeze hour” and 
the “precipitation hours” are not necessarily the same hour. That is, one hour can contain 
precipitation, and a different hour can have an average freezing temperature.  However, it is also 
acceptable if they are the same hour. The total count of days meeting these criteria is reported.  
 
A.2.12  WIND SPEED AVERAGE (MILES PER HOUR) 
 
Each hourly average wind speed value received by the web service is summed.  The totaled result 
is used to calculate the average hourly wind speed in the entire data set (i.e., every hourly average 
wind speed contained in the user selected date/time range). 
 
A.2.13  SKY COVER (OKTAS) 
 
Each hourly average sky cover value received by the web service is summed. The totaled result is 
used to calculate the average hourly sky cover in the entire data set (i.e., every hourly average sky 
cover contained in the user selected date/time range). 
 
Table A-1 shows the list of possible integer values for sky coverage layer code provided by the 
web service and each corresponding text description. Values and meanings are defined in the 
document written by NOAA/National Centers for Environmental Information, titled “Federal 
Climate Complex Data Documentation for Integrated Source Data,” dated January 12, 2018. 
 

Table A-1. Sky Coverage Layer Codes 

Sky Coverage Code Description 
Amount of Sky Covered 

(oktas) 
0 CLR (clear)—no obscuration 0/0 
1-2 FEW 0˂X ˂2 
3-4 SCT (scattered)  2< X <4 
4-7 BKN (broken)  4< X <8 
8 OVC (overcast)  8 
9 Obscured  8 
10 Partial obscuration NA 

 
A.2.14  THORNTHWAITE MOISTURE INDEX (%) 
 
The Thornthwaite Moisture Index (Thornthwaite, 1948) (TMI) is a measure of moisture available 
in the soil. It can be generally described as reflecting the aridity or humidity of the soil and climate, 
calculated from the collective effects of precipitation, evapotranspiration, soil water storage, 
moisture deficit and run off.  Although it was developed as an agricultural tool, it has also been 
used for engineering applications in which soil moisture is a consideration, including foundation 
design and pavement performance (Philip & Taylor, 2012). In TMI calculations, precipitation and 
evapotranspiration are equally important climatic factors. Thornthwaite described the climatic 
cycle by balancing the rainfall, potential evapotranspiration, and soil water holding capacity. 
Computations of the Thornthwaite Moisture Index (TMI) are based upon monthly rainfall, mean 
temperature data, an estimate of the water holding capacity of the soil and the site location. Moist 
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climates have positive values of TI and dry climates have negative values. Table A-2 shows the 
climate types corresponding to TMI ranges. 
 

Table A-2. Climate Types Corresponding to TMI Ranges 
 

Thornthwaite Climate Type 
Thornthwaite Moisture Index 

(%) 
A Perhumid >100  
B4 Humid 80 to 100 
B3 Humid 60 to 80 
B2 Humid 40 to 60 
B1 Humid 20 to 40 
C2 Moist subhumid 0 to 20 
C1 Dry subhumid -20 to 0 
D Semi-arid -40 to -20 
E Arid -60 to -40 

 
The publication titled “Review of Calculation Procedures of Thornthwaite Moisture Index and its 
Impact on Footing Design” (Karunarathne et al., 2016) was used as a guide for the approach on 
how to calculate the TMI. Method 2 documented in this paper was used as the basis of the 
calculations and is described below.  
 
There are 3 major steps in this calculation: 
 
Step 1: 
Cycle through each day’s worth of data and calculate the following: 

• total precipitation per month (P) 
• the average temperature per month (t) 
• the monthly heat index value (i) 

 
Step 2: 
Calculate the following: 
 

• Determine the Total Heat Index (I) by calculating the summation of all monthly heat index 
values that were calculated in Step 1 

• Determine the value of (a), which will be used in upcoming calculations in Step 3 

 
Step 3: 
Cycle through the monthly calculations from Step 1 and use the values calculated in Step 2 to 
calculate the following below: 
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• Calculate potential evaporation  (PE) for each month (assume 12-hour daylight each day) 

 
 

• Calculate soil moisture storage (S) 
 
Note that P is the total monthly precipitation. 
 
Assume that the initial soil moisture value and the maximum soil moisture store are both 10cm.  
 
S = MIN (MAX(Si-1 + (P – PE), 0), Smax) 

• Runoff ® 
R = MAX( (Si-1 + (P – PE) – Smax), 0) 

• Moisture Deficit (D)  
D = -MIN (Si-1 + (P – PE), 0) 
 
Then after completing the cycle through each month of data calculate the following: 
 

• Total Runoff is the summation of all monthly runoff values. 
• Total Deficit is the summation of all monthly moisture deficit values. 
• Total potential evaporation is the summation of all monthly potential evaporation values. 
• Calculate Ia: 

 
• Calculate Ih: 

 
• Calculate TMI: 

 
 
A minimum of 12 months of data is required to calculate TMI. TMI is calculated for each year in 
the data set and then the annual TMI values are averaged to determine the value reported. When a 
query is for a number of months not simply divisible by 12, the remaining fraction of a year is 
disregarded. 
 
A.2.15  RELATIVE HUMIDITY HIGH (%) 
 
The following calculation determines the relative humidity. This calculation is used when 
processing the daily data to determine the overall high and low humidity values and the average 
humidity. 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 100 × 
𝑒𝑒�

17.625∗dewpoint
243.04+dewpoint�

𝑒𝑒�
17.625∗temperature
243.04+temperature�

 

 
Each hourly average dewpoint and temperature value received by the web service is reviewed. The 
humidity is calculated for each hour, and the highest value found across the entire data set is 
reported.  
 
A.2.16  RELATIVE HUMIDITY LOW (%) 
 
Each hourly average dewpoint and temperature value received by the web service is reviewed. The 
humidity is calculated for each hour, and the lowest value found across the entire data set is 
reported.  
 
A.2.17  RELATIVE HUMIDITY AVERAGE (%) 
 
Each hourly average dewpoint and temperature value received by the web service is reviewed. The 
humidity is calculated for each hour, and the average humidity across the entire data set is 
calculated and reported.  
 
A.2.18  HYDRATION DAYS (NUMBER OF DAYS) 
 
Each hourly average dewpoint and temperature value received by the web service is reviewed. The 
humidity is calculated for each hour, and then a count of the number of days where at least one 
hour’s relative humidity reading exceeds 80% is determined. The 80% value was selected based 
on the relative humidity in the pores required for the Portland Cement Hydration reaction to occur, 
as reported in Mehta and Monteiro (2006). 
 
A.2.19  SOLAR RADIATION (WATTS PER METER SQUARED) 
 
Each hourly solar radiation value received by the web service is reviewed. The total radiation for 
every hour is stored and reported to the user. 
  
A.3. RETRIEVING AND DISPLAYING CLIMATE/WEATHER DATA USING PA40 
 
The software flow is as follows: first, a user selects a particular site and date/time range on the 
web page user interface and then selects the “Climate Report” button, as shown in figure A-2. This 
action results in a request sent by the server-side processing component to the web service. The 
request to the web service contains the site name and the start and end date range. Note that the 
“Filter” button and field are not functional in the current version of the software, but is a 
placeholder for future use. 
 
The following data are returned by the web service for each hour in the requested date/time range: 
 
• The respective hour 
• The average temperature for that hour in degrees Fahrenheit  
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• The average wind speed in miles per hour 
• The dew point average in degrees Fahrenheit 
• The total precipitation in inches and hundredths of an inch 
• The solar radiation average in watts per meter squared 
• Average sky cover in oktas 

 

Figure A-2. Web Page User Interface Example 

After the server-side component receives this data back from the web service, it then processes all 
the data and returns it back to the web page, where it is displayed to the user, as illustrated in 
figure A-3. 
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Figure A-3. Results Table Displayed on Web Page 
 

In addition to the climate/weather data processing results, missing data are reported as expected 
hours versus actual hours for which data were returned, and the percentage of completeness. 
 
A.4  PLANNED USE OF CLIMATE AND WEATHER DATA 
 
An approach to determine climate and/or weather’s influence on pavement performance is 
described in the following steps: 
 
• A review of the available distress data stored in PA40 will be performed with the goal of 

identifying airports with relatively complete data sets covering an extended period. A 
number of sections will exhibit distresses, and data will be available from trafficked (keel) 
and lightly trafficked (outside keel) sections. Sections with multiple inspections will be 
reviewed to determine if the distresses exhibit progressive behavior, that is, a distress that 
increases in quantity and/or severity over time. 

 
• For the airports with complete distress data sets, climate and weather data will be retrieved 

from the FAA web service using PA40. Data will be retrieved and calculations performed 
for the periods coinciding with the available distress data. 
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• This step includes performing various analyses (analysis of variance [ANOVA], main 
effect, liner regression, t-Tests or others) of climate and weather against the distress data, 
to look for correlation between the variables. Some previously reported relationships that 
can be further investigated include: 

 
PCC PAVEMENTS 
‒ Average Temperature/Humidity/Wind Speed/Solar Radiation and 

Shrinkage Cracking/Map Cracking. 
‒ Freeze precipitation days and Durability Cracking. 
‒ Precipitation/Humidly and Alkali Silica Reactivity (ASR). 
‒ Precipitation and Faulting/Corner Breaks. 
‒ Temperature and Joint Spall/Corner Spall 
‒ Freeze Thaw Cycles and Joint Spall/Corner Spall 
‒ Days above 90⁰F and Blowups. 
‒ Average Temperature and Longitudinal, Transverse, and Diagonal (LTD) 

Cracking 
 
ASPHALT PAVEMENTS 
‒ Average Temperature and Rutting 
‒ Average Temperature and Shoving 
‒ Average Temperature and Longitudinal &Transverse (L&T) Cracking 
‒ Freeze Thaw Cycles and L&T Cracking 
‒ Freeze Thaw Cycles and Block Cracking 
‒ Freeze Thaw Cycles and Swell 
‒ Solar Radiation and Weathering/Raveling 
‒ Precipitation and Depressions  
‒ Precipitation and L&T Cracking 

 
• In additional to a detailed analysis of individual distresses an assessment of 

Climate/Weather Data vs anti-structural condition index (Anti-SCI) (a non-load-related 
component of pavement condition index [PCI]), foreign object debris (FOD) Index, 
Roughness and PCI can also be made to determine if a relationship exists. 

 
A.5  SUMMARY AND DISCUSSION 
 
Previous research indicates that the presence and severity of some distresses defined in ASTM 
D5340 correlate to the climate zone in which a pavement is located (dry-freeze, dry-non-freeze, 
wet-freeze, wet non-freeze). PA40 has been modified to further explore this relationship by 
providing the capability to associate specific weather events experienced by a pavement with the 
distresses and condition of that pavement at the time of inspection. The system focuses on the 
historical moisture and temperature conditions of a pavement as most climate-related distresses 
are believed to be affected by these two factors. Solar radiation is also included in the system in 
order to determine if a correlation can be established between weathering/raveling and solar 
radiation input. 
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The expected use of the system is to produce data sets similar to those used for generating family 
deterioration curves in a standard pavement management system, but allowing the use of data other 
than age as the independent variable. Once the existence of a correlation between a condition and 
a climate variable is established, future work can add the capability to generate these model types 
in PA40, as shown in figures A-4 and A-5. 
 

 
 

Figure A-4. Recommended Method to Integrate a Climate Variable Into the PA40  
Modeling System 

 

 
 

Figure A-5. Recommended Climate Modeling Capability for PA40 After the Existence of a 
Correlation is Established 
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